-
Title: Row Picture
-
Series: Linear Algebra
-
Chapter: Matrices and linear systems
-
YouTube-Title: Linear Algebra 15 | Row Picture
-
Bright video: https://youtu.be/g1qLd_1F10Q
-
Dark video: https://youtu.be/8BPVI2CPSF0
-
Ad-free video: Watch Vimeo video
-
Quiz: Test your knowledge
-
Dark-PDF: Download PDF version of the dark video
-
Print-PDF: Download printable PDF version
-
Thumbnail (bright): Download PNG
-
Thumbnail (dark): Download PNG
-
Subtitle on GitHub: la15_sub_eng.srt missing
-
Timestamps (n/a)
-
Subtitle in English (n/a)
-
Quiz Content
Q1: Which claim is correct for vectors $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$?
A1: $\mathbf{u}^T \mathbf{v} = \langle \mathbf{u}, \mathbf{v} \rangle$
A2: $\mathbf{u} \mathbf{v}^T = \langle \mathbf{u}, \mathbf{v} \rangle$
A3: $\mathbf{u} \mathbf{v} = \langle \mathbf{u}, \mathbf{v} \rangle$
A4: $\mathbf{u}^T \mathbf{v}^T = \langle \mathbf{u}, \mathbf{v} \rangle$
Q2: Let $\mathbf{u}, \mathbf{v} \in \mathbb{R}^2$ given by $\mathbf{u} = \binom{1}{2}$ and $\mathbf{v} = \binom{-2}{3}$. What is $\mathbf{u}^T \mathbf{v}$?
A1: $4$
A2: $0$
A3: $1$
A4: $3$
A5: $2$
Q3: For a matrix $A$ with rows $\alpha_1^T, \ldots, \alpha_m^T$, we calculate the matrix-vector product $A \mathbf{x}$. What do we get?
A1: $$\begin{pmatrix} \alpha_1^T \mathbf{x} \ \alpha_2^T \mathbf{x} \ \ldots \ \alpha_m^T \mathbf{x}\end{pmatrix} $$
A2: $$\begin{pmatrix} \alpha_m^T \mathbf{x} \ \alpha_m^T \mathbf{x} \ \ldots \ \alpha_m^T \mathbf{x}\end{pmatrix} $$
A3: $$\begin{pmatrix} \alpha_m^T \mathbf{x}^T \ \alpha_m^T \mathbf{x}^T \ \ldots \ \alpha_m^T \mathbf{x}^T \end{pmatrix} $$
A4: $$\begin{pmatrix} \alpha_1^T \mathbf{x} \ \alpha_1^T \mathbf{x} \ \ldots \ \alpha_1^T \mathbf{x}\end{pmatrix} $$
-
Last update: 2024-10