-
Title: Column Picture of the Matrix-Vector Product
-
Series: Linear Algebra
-
Chapter: Matrices and linear systems
-
YouTube-Title: Linear Algebra 14 | Column Picture of the Matrix-Vector Product
-
Bright video: https://youtu.be/PZyTBvc9qxQ
-
Dark video: https://youtu.be/P56YTeY2YzM
-
Quiz: Test your knowledge
-
Dark-PDF: Download PDF version of the dark video
-
Print-PDF: Download printable PDF version
-
Thumbnail (bright): Download PNG
-
Thumbnail (dark): Download PNG
-
Subtitle on GitHub: la14_sub_eng.srt missing
-
Timestamps (n/a)
-
Subtitle in English (n/a)
-
Quiz Content
Q1: Which of the following claims is correct?
A1: For $ A \in \mathbb{R}^{m \times n} $ and $ \mathbf{x} \in \mathbb{R}^n $, the vector $A \mathbf{x}$ is a linear combination of the columns of $A$.
A2: For $ A \in \mathbb{R}^{m \times n} $ and $ \mathbf{x} \in \mathbb{R}^m $, the vector $A \mathbf{x}$ is well-defined.
A3: For $ A \in \mathbb{R}^{n \times m} $ and $ \mathbf{x} \in \mathbb{R}^n $, the vector $A \mathbf{x}$ is well-defined.
A4: For $ A \in \mathbb{R}^{m \times n} $ and $ \mathbf{x} \in \mathbb{R}^n $, the vector $A \mathbf{x}$ is a linear combination of the rows of $A$.
Q2: Which of the following equations is correct?
A1: $$ \begin{pmatrix} 2 & 1 \ 0 & 1 \end{pmatrix} \begin{pmatrix}x_1 \ x_2 \end{pmatrix} = x_1 \begin{pmatrix} 2 \ 0 \end{pmatrix} + x_2 \begin{pmatrix} 1 \ 1 \end{pmatrix} $$
A2: $$ \begin{pmatrix} 2 & 1 \ 0 & 1 \end{pmatrix} \begin{pmatrix}x_1 \ x_2 \end{pmatrix} = x_1 \begin{pmatrix} 2 \ 1 \end{pmatrix} + x_2 \begin{pmatrix} 1 \ 0 \end{pmatrix} $$
A3: $$ \begin{pmatrix} 2 & 1 \ 0 & 1 \end{pmatrix} \begin{pmatrix}x_1 \ x_2 \end{pmatrix} = 0 $$
A4: $$ \begin{pmatrix} 2 & 1 \ 0 & 1 \end{pmatrix} \begin{pmatrix}x_1 \ x_2 \end{pmatrix} = \begin{pmatrix}x_1 \ x_2 \end{pmatrix} $$
A5: $$ \begin{pmatrix} 2 & 1 \ 0 & 1 \end{pmatrix} \begin{pmatrix}x_1 \ x_2 \end{pmatrix} = \begin{pmatrix} 2 x_1 \ x_2 \end{pmatrix} $$
Q3: A matrix $A \in \mathbb{R}^{m \times n}$ defines a map $f_A$. What is the correct definition?
A1: $ f_A: \mathbb{R}^n \rightarrow \mathbb{R}^m , , ~ \mathbf{x} \mapsto A \mathbf{x}$
A2: $ f_A: \mathbb{R}^m \rightarrow \mathbb{R}^n , , ~ \mathbf{x} \mapsto A \mathbf{x}$
A3: $ f_A: \mathbb{R}^m \rightarrow \mathbb{R}^n , , ~ \mathbf{x} \mapsto A - \mathbf{x}$
A4: $ f_A: \mathbb{R}^m \rightarrow \mathbb{R}^n , , ~ \mathbf{x} \mapsto A + \mathbf{x}$
A5: $ f_A: \mathbb{R}^n \rightarrow \mathbb{R}^m , , ~ \mathbf{x} \mapsto \mathbf{x}$
-
Last update: 2024-10