• Title: Special Matrices

  • Series: Linear Algebra

  • Chapter: Matrices and linear systems

  • YouTube-Title: Linear Algebra 13 | Special Matrices

  • Bright video: https://youtu.be/QWgrKZTbmI8

  • Dark video: https://youtu.be/GJrb55b6FCU

  • Ad-free video: Watch Vimeo video

  • Quiz: Test your knowledge

  • PDF: Download PDF version of the bright video

  • Dark-PDF: Download PDF version of the dark video

  • Print-PDF: Download printable PDF version

  • Thumbnail (bright): Download PNG

  • Thumbnail (dark): Download PNG

  • Subtitle on GitHub: la13_sub_eng.srt missing

  • Definitions in the video: diagonal matrix, upper triagular matrix, lower triagular matrix, symmetric matrix, skew-symmetric matrix

  • Timestamps (n/a)
  • Subtitle in English (n/a)
  • Quiz Content

    Q1: Which of the following matrices is not a diagonal matrix?

    A1: $$ \begin{pmatrix} 2 & 1 & 0 \ 0 & 0 & 0 \end{pmatrix} $$

    A2: $$ \begin{pmatrix} 2 & 0 & 0 \ 0 & 1 & 0 \end{pmatrix} $$

    A3: $$ \begin{pmatrix} 2 & 0 \ 0 & 1 \ 0 & 0 \end{pmatrix} $$

    A4: $$ \begin{pmatrix} 2 & 0 & 0 \ 0 & 3 & 0 \ 0 & 0 & 1 \end{pmatrix} $$

    A5: $$ \begin{pmatrix} 2 & 0 & 0 \ 0 & 0 & 0 \ 0 & 0 & 1 \end{pmatrix} $$

    Q2: Which of the following matrices is not an upper triagonal matrix?

    A1: $$ \begin{pmatrix} 2 & 1 & 0 \ 1 & 0 & 0 \end{pmatrix} $$

    A2: $$ \begin{pmatrix} 2 & 1 \ 0 & 1 \end{pmatrix} $$

    A3: $$ \begin{pmatrix} 2 & 0 \ 0 & 1 \end{pmatrix} $$

    A4: $$ \begin{pmatrix} 2 & 0 & 0 \ 0 & 3 & 0 \ 0 & 0 & 1 \end{pmatrix} $$

    A5: $$ \begin{pmatrix} 2 & 5 & 5 \ 0 & 4 & 7 \ 0 & 0 & 1 \end{pmatrix} $$

    Q3: Which of the following matrices is not a symmetric matrix?

    A1: $$ \begin{pmatrix} 2 & 1\ 0 & 1 \end{pmatrix} $$

    A2: $$ \begin{pmatrix} 2 & 0 \ 0 & 1 \end{pmatrix} $$

    A3: $$ \begin{pmatrix} 2 & 0 \ 0 & 2 \end{pmatrix} $$

    A4: $$ \begin{pmatrix} 2 & 0 & 0 \ 0 & 3 & 0 \ 0 & 0 & 1 \end{pmatrix} $$

    A5: $$ \begin{pmatrix} 2 & 0 & -1 \ 0 & 0 & 0 \ -1 & 0 & 1 \end{pmatrix} $$

  • Last update: 2024-10

  • Back to overview page


Do you search for another mathematical topic?