• Title: Cross Product

  • Series: Linear Algebra

  • Chapter: Vectors in $ \mathbb{R}^n $

  • YouTube-Title: Linear Algebra 10 | Cross Product

  • Bright video: https://youtu.be/HZM7K6MEdDU

  • Dark video: https://youtu.be/sa8REnW-p8o

  • Quiz: Test your knowledge

  • PDF: Download PDF version of the bright video

  • Dark-PDF: Download PDF version of the dark video

  • Print-PDF: Download printable PDF version

  • Thumbnail (bright): Download PNG

  • Thumbnail (dark): Download PNG

  • Subtitle on GitHub: la10_sub_eng.srt missing

  • Timestamps (n/a)
  • Subtitle in English (n/a)
  • Quiz Content

    Q1: Let $\mathbf{v},\mathbf{w} \in \mathbb{R}^3$ be given by $\mathbf{v} = \begin{pmatrix} 1 \ 2 \ 3 \end{pmatrix}$ and $\mathbf{w} = \begin{pmatrix} -2 \ 1 \ 0 \end{pmatrix}$. What is the cross product $\mathbf{v} \times \mathbf{w}$?

    A1: $0$

    A2: $\begin{pmatrix} -1 \ 1 \ 0 \end{pmatrix}$

    A3: $\begin{pmatrix} -3 \ 6 \ 6 \end{pmatrix}$

    A4: $\begin{pmatrix} -3 \ -6 \ 5 \end{pmatrix}$

    Q2: Let $\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3 \in \mathbb{R}^3$ be the canonical unit vectors. What is not correct?

    A1: $ \mathbf{e}_1 \times \mathbf{e}_3 = \mathbf{e}_2$

    A2: $ \mathbf{e}_1 \times \mathbf{e}_2 = \mathbf{e}_3$

    A3: $ \mathbf{e}_2 \times \mathbf{e}_3 = \mathbf{e}_1$

    A4: $ \mathbf{e}_3 \times \mathbf{e}_1 = \mathbf{e}_2$

    A5: $ \mathbf{e}_3 \times \mathbf{e}_2 = -\mathbf{e}_1$

    Q3: What is not a property of the cross product $ \times: \mathbb{R}^3 \times \mathbb{R}^3 \rightarrow \mathbb{R}^3$?

    A1: $\mathbf{u} \times \mathbf{v} = \mathbf{v} \times \mathbf{u}$ for all $\mathbf{u}, \mathbf{v} \in \mathbb{R}^3$.

    A2: $\mathbf{u} \times \mathbf{v} = - \mathbf{v} \times \mathbf{u}$ for all $\mathbf{u}, \mathbf{v} \in \mathbb{R}^3$.

    A3: $\mathbf{u} \times \mathbf{u} = \mathbf{0}$ for all $\mathbf{u} \in \mathbb{R}^3$.

    A4: $\mathbf{u} \times \mathbf{0} = \mathbf{0}$ for all $\mathbf{u} \in \mathbb{R}^3$.

  • Last update: 2024-10

  • Back to overview page