• Title: Inner Product and Norm

  • Series: Linear Algebra

  • Chapter: Vectors in $ \mathbb{R}^n $

  • YouTube-Title: Linear Algebra 9 | Inner Product and Norm

  • Bright video: https://youtu.be/SCTWQ_W1Cw8

  • Dark video: https://youtu.be/fXWdBineqWI

  • Quiz: Test your knowledge

  • PDF: Download PDF version of the bright video

  • Dark-PDF: Download PDF version of the dark video

  • Print-PDF: Download printable PDF version

  • Thumbnail (bright): Download PNG

  • Thumbnail (dark): Download PNG

  • Subtitle on GitHub: la09_sub_eng.srt missing

  • Timestamps (n/a)
  • Subtitle in English (n/a)
  • Quiz Content

    Q1: Let $\mathbf{v},\mathbf{w} \in \mathbb{R}^3$ be given by $\mathbf{v} = \begin{pmatrix} 1 \ 2 \ 3 \end{pmatrix}$ and $\mathbf{w} = \begin{pmatrix} -2 \ 1 \ 0 \end{pmatrix}$. Are the two vectors orthogonal?

    A1: Yes!

    A2: No!

    Q2: Let $\mathbf{v} \in \mathbb{R}^4$ be given by $\mathbf{v} = \begin{pmatrix} 3 \ 4 \ 0 \ 1 \end{pmatrix}$. What is $| \mathbf{v} |$?

    A1: 0

    A2: 1

    A3: 5

    A4: $\sqrt{10}$

    A5: $\sqrt{26}$

    Q3: What is not a property of the standard inner product $\langle \cdot, \cdot \rangle : \mathbb{R}^n \times \mathbb{R}^n \rightarrow \mathbb{R}$?

    A1: Positive definite

    A2: Symmetric

    A3: Linear in the second argument

    A4: Linear in the first argument

    A5: $\langle \mathbf{v}, \mathbf{v}\rangle = 0 ~ \Leftrightarrow ~ \mathbf{v}=0$

    A6: $\langle \mathbf{v}, \mathbf{v}\rangle = 0 ~ \Leftrightarrow ~ \mathbf{v}\neq 0$

  • Last update: 2024-10

  • Back to overview page