-
Title: Inner Product and Norm
-
Series: Linear Algebra
-
Chapter: Vectors in $ \mathbb{R}^n $
-
YouTube-Title: Linear Algebra 9 | Inner Product and Norm
-
Bright video: https://youtu.be/SCTWQ_W1Cw8
-
Dark video: https://youtu.be/fXWdBineqWI
-
Ad-free video: Watch Vimeo video
-
Quiz: Test your knowledge
-
Dark-PDF: Download PDF version of the dark video
-
Print-PDF: Download printable PDF version
-
Thumbnail (bright): Download PNG
-
Thumbnail (dark): Download PNG
-
Subtitle on GitHub: la09_sub_eng.srt missing
-
Timestamps (n/a)
-
Subtitle in English (n/a)
-
Quiz Content
Q1: Let $\mathbf{v},\mathbf{w} \in \mathbb{R}^3$ be given by $\mathbf{v} = \begin{pmatrix} 1 \ 2 \ 3 \end{pmatrix}$ and $\mathbf{w} = \begin{pmatrix} -2 \ 1 \ 0 \end{pmatrix}$. Are the two vectors orthogonal?
A1: Yes!
A2: No!
Q2: Let $\mathbf{v} \in \mathbb{R}^4$ be given by $\mathbf{v} = \begin{pmatrix} 3 \ 4 \ 0 \ 1 \end{pmatrix}$. What is $| \mathbf{v} |$?
A1: 0
A2: 1
A3: 5
A4: $\sqrt{10}$
A5: $\sqrt{26}$
Q3: What is not a property of the standard inner product $\langle \cdot, \cdot \rangle : \mathbb{R}^n \times \mathbb{R}^n \rightarrow \mathbb{R}$?
A1: Positive definite
A2: Symmetric
A3: Linear in the second argument
A4: Linear in the first argument
A5: $\langle \mathbf{v}, \mathbf{v}\rangle = 0 ~ \Leftrightarrow ~ \mathbf{v}=0$
A6: $\langle \mathbf{v}, \mathbf{v}\rangle = 0 ~ \Leftrightarrow ~ \mathbf{v}\neq 0$
-
Last update: 2024-10