• Title: Linear Subspaces

  • Series: Linear Algebra

  • Chapter: Vectors in $ \mathbb{R}^n $

  • YouTube-Title: Linear Algebra 6 | Linear Subspaces

  • Bright video: https://youtu.be/TITspOSjMZw

  • Dark video: https://youtu.be/-haS6TdpcSU

  • Quiz: Test your knowledge

  • PDF: Download PDF version of the bright video

  • Dark-PDF: Download PDF version of the dark video

  • Print-PDF: Download printable PDF version

  • Thumbnail (bright): Download PNG

  • Thumbnail (dark): Download PNG

  • Subtitle on GitHub: la06_sub_eng.srt missing

  • Timestamps (n/a)
  • Subtitle in English (n/a)
  • Quiz Content

    Q1: Let $U \subseteq \mathbb{R}^n$ be a subspace. Which statement is not correct?

    A1: $\mathbf{0} \in U$.

    A2: For $\mathbf{u}, \mathbf{v} \in U$, we have $\mathbf{u} - 2 \mathbf{v} \in U$.

    A3: For $\mathbf{u}, \mathbf{v} \in U$, we have $5 \mathbf{u} - 8 \mathbf{v} \in U$.

    A4: For $\mathbf{u} \in U$, we have $3\mathbf{u} \notin U$.

    Q2: Which of the following subsets in $\mathbb{R}^2$ is not a subspace of $\mathbb{R}^2$?

    A1: ${ \mathbf{v} \in \mathbb{R}^2 \mid \mathbf{v} \neq \mathbf{0} }$

    A2: ${ \mathbf{0} }$

    A3: ${ \mathbf{v} \in \mathbb{R}^2 \mid \mathbf{v} = \mathbf{0} }$

    A4: $ \mathbb{R}^2 $

    A5: $\left{ \binom{v_1}{v_2} \in \mathbb{R}^2 \mid v_1 + v_2 = 0 \right}$

    Q3: Let $U,V \subseteq \mathbb{R}^n$ be two subspaces. Is the intersection $U \cap V$ a subspace as well?

    A1: Yes!

    A2: No!

  • Last update: 2024-10

  • Back to overview page