• Title: Lines in $ \mathbb{R}^2 $

  • Series: Linear Algebra

  • Chapter: Vectors in $ \mathbb{R}^n $

  • YouTube-Title: Linear Algebra 4 | Lines in ℝ²

  • Bright video: https://youtu.be/o1zIl30ElY0

  • Dark video: https://youtu.be/N9rtX7KlHwg

  • Quiz: Test your knowledge

  • PDF: Download PDF version of the bright video

  • Dark-PDF: Download PDF version of the dark video

  • Print-PDF: Download printable PDF version

  • Thumbnail (bright): Download PNG

  • Thumbnail (dark): Download PNG

  • Subtitle on GitHub: la04_sub_eng.srt missing

  • Timestamps (n/a)
  • Subtitle in English (n/a)
  • Quiz Content

    Q1: Which of the following sets does not describe a line in the plane?

    A1: $$\left{ \binom{x}{y} \in \mathbb{R}^2 ~\bigg|~ x + y = 2 \right} $$

    A2: $$\left{ \binom{x}{y} \in \mathbb{R}^2 ~\bigg|~ x = 2 \right} $$

    A3: $$\left{ \binom{x}{y} \in \mathbb{R}^2 ~\bigg|~ y = 2 \right} $$

    A4: $$\left{ \binom{x}{y} \in \mathbb{R}^2 ~\bigg|~ x^2 + y^2 = 2 \right} $$

    A5: $$\left{ \binom{x}{y} \in \mathbb{R}^2 ~\bigg|~ x^2 = 0 \right} $$

    Q2: What is not a possible normal vector $\mathbf{n}$ for the line $$\left{ \binom{x}{y} \in \mathbb{R}^2 ~\bigg|~ x = 2 \right} $$

    A1: $$ \mathbf{n} = \binom{1}{0} $$

    A2: $$ \mathbf{n} = \binom{0}{1} $$

    A3: $$ \mathbf{n} = \binom{-2}{0} $$

    Q3: Does the line $$\left{ \binom{x}{y} \in \mathbb{R}^2 ~\bigg|~ x = 2 \right} $$ go through the origin?

    A1: Yes!

    A2: No!

  • Last update: 2024-10

  • Back to overview page