-
Title: Lines in $ \mathbb{R}^2 $
-
Series: Linear Algebra
-
Chapter: Vectors in $ \mathbb{R}^n $
-
YouTube-Title: Linear Algebra 4 | Lines in ℝ²
-
Bright video: https://youtu.be/o1zIl30ElY0
-
Dark video: https://youtu.be/N9rtX7KlHwg
-
Quiz: Test your knowledge
-
Dark-PDF: Download PDF version of the dark video
-
Print-PDF: Download printable PDF version
-
Thumbnail (bright): Download PNG
-
Thumbnail (dark): Download PNG
-
Subtitle on GitHub: la04_sub_eng.srt missing
-
Timestamps (n/a)
-
Subtitle in English (n/a)
-
Quiz Content
Q1: Which of the following sets does not describe a line in the plane?
A1: $$\left{ \binom{x}{y} \in \mathbb{R}^2 ~\bigg|~ x + y = 2 \right} $$
A2: $$\left{ \binom{x}{y} \in \mathbb{R}^2 ~\bigg|~ x = 2 \right} $$
A3: $$\left{ \binom{x}{y} \in \mathbb{R}^2 ~\bigg|~ y = 2 \right} $$
A4: $$\left{ \binom{x}{y} \in \mathbb{R}^2 ~\bigg|~ x^2 + y^2 = 2 \right} $$
A5: $$\left{ \binom{x}{y} \in \mathbb{R}^2 ~\bigg|~ x^2 = 0 \right} $$
Q2: What is not a possible normal vector $\mathbf{n}$ for the line $$\left{ \binom{x}{y} \in \mathbb{R}^2 ~\bigg|~ x = 2 \right} $$
A1: $$ \mathbf{n} = \binom{1}{0} $$
A2: $$ \mathbf{n} = \binom{0}{1} $$
A3: $$ \mathbf{n} = \binom{-2}{0} $$
Q3: Does the line $$\left{ \binom{x}{y} \in \mathbb{R}^2 ~\bigg|~ x = 2 \right} $$ go through the origin?
A1: Yes!
A2: No!
-
Last update: 2024-10