-
Title: Linear Combinations and Inner Products in $ \mathbb{R}^2 $
-
Series: Linear Algebra
-
Chapter: Vectors in $ \mathbb{R}^n $
-
YouTube-Title: Linear Algebra 3 | Linear Combinations and Inner Products in ℝ²
-
Bright video: https://youtu.be/AJPa8Mciq48
-
Dark video: https://youtu.be/kOhynwtKXSo
-
Quiz: Test your knowledge
-
Dark-PDF: Download PDF version of the dark video
-
Print-PDF: Download printable PDF version
-
Thumbnail (bright): Download PNG
-
Thumbnail (dark): Download PNG
-
Subtitle on GitHub: la03_sub_eng.srt missing
-
Timestamps (n/a)
-
Subtitle in English (n/a)
-
Quiz Content
Q1: Let $\mathbf{v},\mathbf{w} \in \mathbb{R}^2$. Is $\mathbf{v}+\mathbf{w}$ a linear combination of $\mathbf{v}$ and $\mathbf{w}$?
A1: Yes!
A2: No!
Q2: Let $\mathbf{v},\mathbf{w} \in \mathbb{R}^2$ be given by $\mathbf{v} = \begin{pmatrix} 1 \ 2 \end{pmatrix}$ and $\mathbf{w} = \begin{pmatrix} -2 \ 1 \end{pmatrix}$. Are the two vectors orthogonal?
A1: Yes!
A2: No!
Q3: Let $\mathbf{v} \in \mathbb{R}^2$ be given by $\mathbf{v} = \begin{pmatrix} 3 \ 4 \end{pmatrix}$. What is $| \mathbf{v} |$?
A1: 0
A2: 1
A3: 5
A4: $\sqrt{10}$
A5: $\sqrt{7}$
-
Last update: 2024-10