• Title: Vectors in $ \mathbb{R}^2 $

  • Series: Linear Algebra

  • Chapter: Vectors in $ \mathbb{R}^n $

  • YouTube-Title: Linear Algebra 2 | Vectors in ℝ²

  • Bright video: https://youtu.be/eS1QJ5Sfz0Q

  • Dark video: https://youtu.be/edqg1mnjsog

  • Quiz: Test your knowledge

  • PDF: Download PDF version of the bright video

  • Dark-PDF: Download PDF version of the dark video

  • Print-PDF: Download printable PDF version

  • Thumbnail (bright): Download PNG

  • Thumbnail (dark): Download PNG

  • Subtitle on GitHub: la02_sub_eng.srt missing

  • Timestamps (n/a)
  • Subtitle in English (n/a)
  • Quiz Content

    Q1: On $\mathbb{R}^2$ we have two operations. How is the addition defined?

    A1: $$ \begin{pmatrix} v_1 \ v_2 \end{pmatrix} + \begin{pmatrix} w_1 \ w_2 \end{pmatrix} = \begin{pmatrix} v_1 \ v_2 \end{pmatrix} $$

    A2: $$ \begin{pmatrix} v_1 \ v_2 \end{pmatrix} + \begin{pmatrix} w_1 \ w_2 \end{pmatrix} = \begin{pmatrix} v_1+ w_1 \ v_2 +w_2 \end{pmatrix} $$

    A3: $$ \begin{pmatrix} v_1 \ v_2 \end{pmatrix} + \begin{pmatrix} w_1 \ w_2 \end{pmatrix} = \begin{pmatrix} v_1 w_1 \ v_2 w_2 \end{pmatrix} $$

    A4: $$ \begin{pmatrix} v_1 \ v_2 \end{pmatrix} + \begin{pmatrix} w_1 \ w_2 \end{pmatrix} = \begin{pmatrix} v_1 \ v_1 \end{pmatrix} $$

    Q2: On $\mathbb{R}^2$ we have two operations. How is the scalar multiplication defined?

    A1: $$ \lambda \cdot \begin{pmatrix} v_1 \ v_2 \end{pmatrix} = \begin{pmatrix} \lambda v_1 \ v_2 \end{pmatrix} $$

    A2: $$ \lambda \cdot \begin{pmatrix} v_1 \ v_2 \end{pmatrix} = \begin{pmatrix} v_1 \ \lambda v_2 \end{pmatrix} $$

    A3: $$ \lambda \cdot \begin{pmatrix} v_1 \ v_2 \end{pmatrix} = \begin{pmatrix} \lambda v_1 \ \lambda v_2 \end{pmatrix} $$

    A4: $$ \lambda \cdot \begin{pmatrix} v_1 \ v_2 \end{pmatrix} = \begin{pmatrix} \lambda v_1 \ \lambda v_2 v_1 \end{pmatrix} $$

    Q3: What is $$5 \cdot \begin{pmatrix} 1 \ 2 \end{pmatrix} + \begin{pmatrix} 0 \ 1 \end{pmatrix} \text{?}$$

    A1: $$\begin{pmatrix} 5 \ 10 \end{pmatrix}$$

    A2: $$\begin{pmatrix} 6 \ 10 \end{pmatrix}$$

    A3: $$\begin{pmatrix} 6 \ 11 \end{pmatrix}$$

    A4: $$\begin{pmatrix} 5 \ 11 \end{pmatrix}$$

    A5: $$\begin{pmatrix} 6 \ 12 \end{pmatrix}$$

  • Last update: 2024-10

  • Back to overview page