• Title: Spectrum of Compact Operators

  • Series: Functional Analysis

  • YouTube-Title: Functional Analysis 33 | Spectrum of Compact Operators

  • Bright video: https://youtu.be/vAO57QjSCCo

  • Dark video: https://youtu.be/PmJIYVT4TGI

  • Quiz: Test your knowledge

  • PDF: Download PDF version of the bright video

  • Dark-PDF: Download PDF version of the dark video

  • Print-PDF: Download printable PDF version

  • Thumbnail (bright): Download PNG

  • Thumbnail (dark): Download PNG

  • Subtitle on GitHub: fa33_sub_eng.srt missing

  • Timestamps (n/a)
  • Subtitle in English (n/a)
  • Quiz Content

    Q1: Let $X,Y$ be two normed spaces and $T: X \rightarrow Y$ a bounded linear operator. Which is the correct condition for $T$ being a compact operator?

    A1: $\overline{T[ B_1(0) ]}$ is compact.

    A2: $ T[ B_1(0) ]$ is closed.

    A3: $ T[ B_1(0) ]$ is compact.

    A4: $ T[ B_1(0) ]$ is open.

    A5: $ T[ B_1(0) ]$ is bounded.

    A6: $\overline{T[ B_1(0) ]}$ is finite.

    Q2: Let $X$ be a complex Banach space and $T: X \rightarrow X$ a compact operator. Which claim is, in general, not correct?

    A1: $\sigma(T)$ is always a finite set.

    A2: $\sigma(T)$ is always a countable set.

    A3: $\sigma(T) \setminus { 0 }$ is always a countable set.

    A4: $\sigma(T) \setminus { 0 }$ could be the empty set.

    Q3: Let $X$ be an infinite-dimensional complex Banach space and $T: X \rightarrow X$ a compact operator. Which claim is, in general, not correct?

    A1: $\sigma(T) \cap { 0 }$ is the empty set.

    A2: $\sigma(T) \cap { 0 }$ is a finite set.

    A3: $\sigma(T) \setminus { 0 }$ is a countable set.

    A4: $\sigma(T)$ contains at least one element.

  • Last update: 2024-10

  • Back to overview page