• Title: Orthogonality

  • Series: Functional Analysis

  • YouTube-Title: Functional Analysis 11 | Orthogonality

  • Bright video: https://youtu.be/9s9jov5cvy0

  • Dark video: https://youtu.be/1en7nSfgRjo

  • Quiz: Test your knowledge

  • PDF: Download PDF version of the bright video

  • Dark-PDF: Download PDF version of the dark video

  • Print-PDF: Download printable PDF version

  • Thumbnail (bright): Download PNG

  • Thumbnail (dark): Download PNG

  • Subtitle on GitHub: fa11_sub_eng.srt missing

  • Timestamps

    00:00 Introduction

    00:20 Definitions

    01:58 Remark

    03:43 Visualisations

    04:58 Credits

  • Subtitle in English (n/a)
  • Quiz Content

    Q1: Let $(X, \langle \cdot, \cdot \rangle)$ be an inner product space with $x,y \in X$. What is not correct in general?

    A1: If $x = 0$, then $x \perp y$.

    A2: If $x \perp y$, then $x$ and $y$ are orthogonal.

    A3: If $x \perp x$, then $x = 0$.

    A4: If $x - y \perp x$, then $x = 0$.

    Q2: Let $(X, \langle \cdot, \cdot \rangle)$ be an inner product space with $x \in X$ and $U, V \subseteq X$. What is not correct in general?

    A1: If $x = 0$, then ${x}^\perp = X$.

    A2: If $x \perp y$ for all $y \in U$, then ${x} = U^\perp$.

    A3: If $U \subseteq V$ then $U^\perp \supseteq V^\perp$.

    A4: $U^\perp$ is always a subspace in $X$.

    Q3: Let $(\mathbb{C}^n, \langle \cdot, \cdot \rangle)$ be the inner product space with the standard inner product. Are $\binom{i}{1}$ and $\binom{-i}{1}$ orthogonal?

    A1: Yes!

    A2: No!

  • Last update: 2024-10

  • Back to overview page