• Title: Bessel’s Inequality and Parseval’s Identity

  • Series: Fourier Transform

  • Chapter: Fourier Series

  • YouTube-Title: Fourier Transform 8 | Bessel’s Inequality and Parseval’s Identity

  • Bright video: https://youtu.be/nRuLT4l8DGU

  • Dark video: https://youtu.be/Na_O7SZQKkA

  • Quiz: Test your knowledge

  • PDF: Download PDF version of the bright video

  • Dark-PDF: Download PDF version of the dark video

  • Print-PDF: Download printable PDF version

  • Thumbnail (bright): Download PNG

  • Thumbnail (dark): Download PNG

  • Subtitle on GitHub: ft08_sub_eng.srt missing

  • Timestamps (n/a)
  • Subtitle in English (n/a)
  • Quiz Content

    Q1: Consider $V = \mathbb{R}^4$ with the standard inner product and the ONS given by $(e_1, e_2, e_3)$, where $e_1 = (1,0,0,0)^T$, $e_2 = (0,1,0,0)^T$, and $e_3 = (0,0,1,0)^T$. How does Bessel’s inequality look like in this case for $x = (x_1, x_2, x_3 , x_4)^T \in V$.

    A1: $$ \sum_{k = 1}^4 | x_k | \leq | x |^2 $$

    A2: $$ \sum_{k = 1}^3 | x_k |^2 \leq | x | $$

    A3: $$ \sum_{k = 1}^3 | x_k |^2 \leq \sum_{k = 1}^4 | x_k |^2 $$

    A4: $$ \sqrt{\sum_{k = 1}^2 | x_k |^2} \leq | x |^2 $$

    Q2: Consider a finite-dimensional vector space $V$ with the standard inner product and an ONB $(e_1, \ldots, e_n)$. Is Parseval’s identity satisfied in this case?

    A1: Yes, we always have $$ \sum_{k = 1}^n |\langle e_k, x \rangle|^2 = | x |^2 $$ for all $x \in V$.

    A2: No, only in special cases. We only have $$ \sum_{k = 1}^n |\langle e_k, x \rangle|^2 \leq | x |^2 $$ for all $x \in V$ in general.

    A3: No, it is never fulfilled.

  • Last update: 2024-11

  • Back to overview page