-
Title: Integrable Functions
-
Series: Fourier Transform
-
Chapter: Fourier Series
-
YouTube-Title: Fourier Transform 5 | Integrable Functions
-
Bright video: https://youtu.be/2NUNRQEp7YE
-
Dark video: https://youtu.be/LgRBO95N0xM
-
Ad-free video: Watch Vimeo video
-
Quiz: Test your knowledge
-
Dark-PDF: Download PDF version of the dark video
-
Print-PDF: Download printable PDF version
-
Thumbnail (bright): Download PNG
-
Thumbnail (dark): Download PNG
-
Subtitle on GitHub: ft05_sub_eng.srt missing
-
Timestamps (n/a)
-
Subtitle in English (n/a)
-
Quiz Content
Q1: Consider the function $f: [0,1] \rightarrow \mathbb{R}$ given by $f(0) = 0$ and $f(x) = \frac{1}{x}$ for $x > 0$. Is the function integrable?
A1: No, because $\int_0^1 | f(x) | , dx = \infty $.
A2: Yes, because $\int_0^1 | f(x) | , dx < \infty $.
A3: No, because $f$ is unbounded.
A4: Yes, because $f$ is bounded.
Q2: Consider the function $f: [0,1] \rightarrow \mathbb{R}$ given by $f(0) = 0$ and $f(x) = \frac{1}{\sqrt{x}}$ for $x > 0$. Is the function integrable?
A1: No, because $\int_0^1 | f(x) | , dx = \infty $.
A2: Yes, because $\int_0^1 | f(x) | , dx < \infty $.
A3: No, because $f$ is unbounded.
A4: Yes, because $f$ is bounded.
Q3: Consider the function $f: [0,1] \rightarrow \mathbb{R}$ given by $f(0) = 0$ and $f(x) = \frac{1}{\sqrt{x}}$ for $x > 0$. Is the function square-integrable?
A1: No, because $\int_0^1 | f(x) |^2 , dx = \infty $.
A2: Yes, because $\int_0^1 | f(x) |^2 , dx < \infty $.
A3: No, because $f$ is unbounded.
A4: Yes, because $f$ is bounded.
-
Last update: 2024-11