• Title: Orthonormalbasis of Trigonometric Functions

  • Series: Fourier Transform

  • Chapter: Fourier Series

  • YouTube-Title: Fourier Transform 4 | Orthonormalbasis of Trigonometric Functions

  • Bright video: https://youtu.be/6Z8EXPFH-pk

  • Dark video: https://youtu.be/0bhXht8mDUY

  • Ad-free video: Watch Vimeo video

  • Quiz: Test your knowledge

  • PDF: Download PDF version of the bright video

  • Dark-PDF: Download PDF version of the dark video

  • Print-PDF: Download printable PDF version

  • Thumbnail (bright): Download PNG

  • Thumbnail (dark): Download PNG

  • Subtitle on GitHub: ft04_sub_eng.srt missing

  • Timestamps (n/a)
  • Subtitle in English (n/a)
  • Quiz Content

    Q1: Consider the trigonometric polynomial $f(x) = 1 + \sum_{k=1}^n a_k \cos(k x)$. How can the coefficients $a_k$ be calculated?

    A1: $a_k = \frac{1}{\pi} \int_{-\pi}^{\pi} \cos(kx) f(x) , dx$

    A2: $a_k = \int_{-\pi}^{\pi} \cos(kx) f(x) , dx$

    A3: $a_k = \frac{1}{2 \pi} \int_{-\pi}^{\pi} \cos(kx) f(x) , dx$

    A4: $a_k = -\frac{1}{2\pi} \int_{-\pi}^{\pi} \cos(kx) f(x) , dx$

    Q2: Consider the trigonometric polynomial $f(x) = a_0 + \sum_{k=1}^n a_k \cos(k x)$. How can the coefficient $a_0$ be calculated?

    A1: $a_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) , dx$

    A2: $a_0 = \frac{1}{\sqrt{2}\pi} \int_{-\pi}^{\pi} f(x) , dx$

    A3: $a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) , dx$

    A4: $a_0 = \frac{\sqrt{2}}{\pi} \int_{-\pi}^{\pi} f(x) , dx$

    Q3: Consider the trigonometric polynomial $f(x) = a_0 + \sum_{k=1}^n a_k \cos(k x)+ \sum_{k=1}^n b_k \sin(k x)$. How can the coefficients $b_k$ be calculated?

    A1: $b_k = \frac{1}{\pi} \int_{-\pi}^{\pi} \sin(kx) f(x) , dx$

    A2: $b_k = \int_{-\pi}^{\pi} \sin(kx) f(x) , dx$

    A3: $b_k = \frac{1}{2 \pi} \int_{-\pi}^{\pi} \sin(kx) f(x) , dx$

    A4: $b_k = -\frac{1}{2\pi} \int_{-\pi}^{\pi} \sin(kx) f(x) , dx$

  • Last update: 2024-11

  • Back to overview page


Do you search for another mathematical topic?