• Title: Orthogonal Basis

  • Series: Fourier Transform

  • Chapter: Fourier Series

  • YouTube-Title: Fourier Transform 3 | Orthogonal Basis

  • Bright video: https://youtu.be/MNVfBEtlwt0

  • Dark video: https://youtu.be/XiWAuSBXetk

  • Quiz: Test your knowledge

  • PDF: Download PDF version of the bright video

  • Dark-PDF: Download PDF version of the dark video

  • Print-PDF: Download printable PDF version

  • Thumbnail (bright): Download PNG

  • Thumbnail (dark): Download PNG

  • Subtitle on GitHub: ft03_sub_eng.srt missing

  • Timestamps

    00:00 Introduction

    00:45 Real trigonometric polynomials

    01:30 Subspace of trigonometric polynomials

    02:41 Inner product for trigonometric polynomials

    04:11 Examples

    11:54 Result: OB for trigonometric polynomials

    12:55 Credits

  • Subtitle in English (n/a)
  • Quiz Content

    Q1: What dimension has the space spanned by the functions $x \mapsto 1$, $x \mapsto \cos(kx)$, $x \mapsto \sin(kx)$ where $k$ goes from $1$ to a fixed $n \in \mathbb{N}$?

    A1: $2n + 1$

    A2: $n$

    A3: $2n$

    A4: $\infty$

    Q2: Consider the inner product $\langle f, g\rangle = \frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) g(x) , dx$. Are the two functions $x \mapsto \cos(2x)$ and $x \mapsto \cos(4x)$ orthogonal?

    A1: Yes, the inner product is zero.

    A2: No, the inner product is not zero.

    A3: No, the inner product cannot be calculated.

    A4: One needs more information.

    Q3: Consider the space spanned by the functions $x \mapsto 1$, $x \mapsto \cos(kx)$, $x \mapsto \sin(kx)$ where $k$ goes from $1$ to a fixed $n \in \mathbb{N}$ and also consider the inner product $\langle f, g\rangle = \frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) g(x) , dx$ Do these elements form an orthonormal basis?

    A1: No, just an orthogonal basis.

    A2: Yes, they do.

    A3: No, they don’t have the orthogonality.

    A4: No, they are not even a basis.

  • Last update: 2024-11

  • Back to overview page