• Title: Trigonometric Polynomials

  • Series: Fourier Transform

  • Chapter: Fourier Series

  • YouTube-Title: Fourier Transform 2 | Trigonometric Polynomials

  • Bright video: https://youtu.be/Us-m1-PQdAw

  • Dark video: https://youtu.be/_KKAT157e9s

  • Quiz: Test your knowledge

  • PDF: Download PDF version of the bright video

  • Dark-PDF: Download PDF version of the dark video

  • Print-PDF: Download printable PDF version

  • Thumbnail (bright): Download PNG

  • Thumbnail (dark): Download PNG

  • Subtitle on GitHub: ft02_sub_eng.srt missing

  • Timestamps (n/a)
  • Subtitle in English (n/a)
  • Quiz Content

    Q1: Which of the following functions $f: \mathbb{R} \rightarrow \mathbb{R}$ is $1$-periodic?

    A1: $f(x) = 5$.

    A2: $f(x) = \sin(x)$

    A3: $f(x) = \sin(\frac{x}{2 \pi})$

    A4: $f(x) = \cos(\pi x)$

    Q2: Which of the following functions $f: \mathbb{R} \rightarrow \mathbb{R}$ is not $2\pi$-periodic?

    A1: $f(x) = \cos(\frac{1}{2} x)$

    A2: $f(x) = \sin( 2 x)$

    A3: $f(x) = \sin(3 x)$

    A4: $f(x) = \cos(x)$

    Q3: How can the trigonometric polynomial $f(x) = 2 \cos(x) + 4 \sin(2x)$ be written as a complex linear combination with exponential functions?

    A1: $f(x) = e^{ix} + e^{-ix} + \frac{2}{i}( e^{i 2 x} - e^{-i 2 x}) $

    A2: $f(x) = 3 e^{ix} + e^{-ix} + e^{i 2 x} - 3 e^{-i 2 x} $

    A3: $f(x) = e^{ix} + \frac{2}{i} e^{i 2 x} $

    A4: $f(x) = 2 e^{ix} + 2 e^{-ix} + \frac{4}{i}( e^{i 2 x} - e^{-i 2 x}) $

  • Last update: 2024-11

  • Back to overview page