• Title: Fundamental Solution

  • Series: Distributions

  • YouTube-Title: Distributions 11 | Fundamental Solution

  • Bright video: https://youtu.be/qtFAnhh1Ht4

  • Dark video: https://youtu.be/JgGRayxB1lA

  • Ad-free video: Watch Vimeo video

  • Quiz: Test your knowledge

  • PDF: Download PDF version of the bright video

  • Dark-PDF: Download PDF version of the dark video

  • Print-PDF: Download printable PDF version

  • Thumbnail (bright): Download PNG

  • Thumbnail (dark): Download PNG

  • Subtitle on GitHub: dt11_sub_eng.srt missing

  • Definitions in the video: fundamental solution

  • Timestamps (n/a)
  • Subtitle in English (n/a)
  • Quiz Content

    Q1: What is not correct for the map $D^{\alpha}: \mathcal{D}^\prime(\mathbb{R}^n) \rightarrow \mathcal{D}^\prime(\mathbb{R}^n)$ where $\alpha$ is a non-vanishing multi-index?

    A1: It’s a linear map.

    A2: It’s a continuous map.

    A3: For a sequence $(T_k)$ that converges to $T$ in $\mathcal{D}^\prime(\mathbb{R}^n)$, one also has $D^{\alpha} T_k \xrightarrow{n \rightarrow} T$.

    A4: $D^{\alpha} (5 T) = 5 \cdot D^{\alpha} (T)$ for all $T \in \mathcal{D}^\prime(\mathbb{R}^n)$

    A5: It’s a injective map.

    Q2: What does a fundamental solution $f \in \mathcal{L}^1_{\mathrm{loc}}(\mathbb{R}^n)$ for a differential operator $P(D)$ not fulfil?

    A1: $ P(D) T_f = \delta $

    A2: $ \int_{B_{2}(a)} f(x) ( P(D) \varphi ) , dx = 0$ for every test function and every vector $a \in \mathbb{R}^n$ with $| a | > 2$.

    A3: $ \int_{B_{\varepsilon}(a)} f(x) ( P(D) \varphi ) , dx = 0$ for all $\varepsilon > 0$ and test functions $\varphi$.

  • Last update: 2024-11

  • Back to overview page


Do you search for another mathematical topic?