-
Title: Distributional Derivative
-
Series: Distributions
-
YouTube-Title: Distributions 10 | Distributional Derivative
-
Bright video: https://youtu.be/XLqYN5jVdq4
-
Dark video: https://youtu.be/jv8GZuRSZIw
-
Quiz: Test your knowledge
-
Dark-PDF: Download PDF version of the dark video
-
Print-PDF: Download printable PDF version
-
Thumbnail (bright): Download PNG
-
Thumbnail (dark): Download PNG
-
Subtitle on GitHub: dt10_sub_eng.srt missing
-
Timestamps (n/a)
-
Subtitle in English (n/a)
-
Quiz Content
Q1: What is the correct definition of the derivative of a distribution $T \in \mathcal{D}^\prime(\mathbb{R})$? Here we write $T^\prime$ for the distributional derivative.
A1: $T^{\prime}(\varphi) = - T(\varphi^{\prime}) $
A2: $T^{\prime}(\varphi) = T(\varphi) $
A3: $T^{\prime}(\varphi) = \varphi^{\prime}$
A4: $T^{\prime}(\varphi) = T(\varphi^{\prime}) $
A5: $T^{\prime}(\varphi) = - T(\varphi) $
Q2: What is the correct definition of the partial derivative of a distribution $T \in \mathcal{D}^\prime(\mathbb{R}^n)$?
A1: $D^\alpha T(\varphi) = (-1)^{|\alpha|} T( D^\alpha \varphi) $
A2: $D^\alpha T(\varphi) = T( D^\alpha \varphi) $
A3: $D^\alpha T(\varphi) = - T( D^\alpha \varphi) $
A4: $D^\alpha T(\varphi) = (-1)^{|\alpha|} T( \varphi) $
A5: $D^\alpha T(\varphi) = (-1)^{|\alpha|+1} T( D^\alpha \varphi) $
Q3: Consider the regular distribution given by $$ f(x) = \begin{cases} -1 \text{ if } x \leq 0 \ \hphantom{-}1 \text{ if } x > 0 \end{cases} $$ For $\alpha = (1)$, what is the distributional derivative of $T_f$?
A1: $D^\alpha T_f = 2 \delta $
A2: $D^\alpha T_f = - \delta $
A3: $D^\alpha T_f = \delta $
A4: $D^\alpha T_f = 3 \delta $
-
Last update: 2024-11