-
Title: Multiplication with Smooth Functions
-
Series: Distributions
-
YouTube-Title: Distributions 8 | Multiplication with Smooth Functions
-
Bright video: https://youtu.be/k_228Oxz284
-
Dark video: https://youtu.be/bM9xaL-1RYs
-
Ad-free video: Watch Vimeo video
-
Quiz: Test your knowledge
-
Dark-PDF: Download PDF version of the dark video
-
Print-PDF: Download printable PDF version
-
Thumbnail (bright): Download PNG
-
Thumbnail (dark): Download PNG
-
Subtitle on GitHub: dt08_sub_eng.srt missing
-
Timestamps (n/a)
-
Subtitle in English (n/a)
-
Quiz Content
Q1: What is correct for the distribution $T = f \cdot \delta$ with $f(x) = x^2$?
A1: $T(\varphi) = \varphi(0)$
A2: $T(\varphi) = 2^2 \varphi(0)$
A3: $T(\varphi) = 0$
A4: $T(\varphi) = x^2 \cdot \varphi(0)$
Q2: What is correct for the distribution $T = f \cdot \delta$ with a smooth function $f \in C^\infty(\mathbb{R}^n)$?
A1: $T(\varphi) = 2 \cdot \varphi(0)$
A2: $T(\varphi) = f(x) \varphi(0)$
A3: $T(\varphi) = f(0) \varphi(0)$
Q3: Consider two smooth functions $f,g \in C^\infty(\mathbb{R}^n)$. What is correct for the product $T_f \cdot T_g$?
A1: $ \langle T_f \cdot T_g , \varphi \rangle = 0$
A2: $ \langle T_f \cdot T_g , \varphi \rangle = \langle T_{f \cdot g} , \varphi \rangle$
A3: $ \langle T_f \cdot T_g , \varphi \rangle = \int_{\mathbb{R}^n} f(x) g(x) dx$
A4: $ \langle T_f \cdot T_g , \varphi \rangle = \int_{\mathbb{R}^n} \varphi(x)dx$
-
Last update: 2024-11