• Title: Multiplication with Smooth Functions

  • Series: Distributions

  • YouTube-Title: Distributions 8 | Multiplication with Smooth Functions

  • Bright video: https://youtu.be/k_228Oxz284

  • Dark video: https://youtu.be/bM9xaL-1RYs

  • Quiz: Test your knowledge

  • PDF: Download PDF version of the bright video

  • Dark-PDF: Download PDF version of the dark video

  • Print-PDF: Download printable PDF version

  • Thumbnail (bright): Download PNG

  • Thumbnail (dark): Download PNG

  • Subtitle on GitHub: dt08_sub_eng.srt missing

  • Timestamps (n/a)
  • Subtitle in English (n/a)
  • Quiz Content

    Q1: What is correct for the distribution $T = f \cdot \delta$ with $f(x) = x^2$?

    A1: $T(\varphi) = \varphi(0)$

    A2: $T(\varphi) = 2^2 \varphi(0)$

    A3: $T(\varphi) = 0$

    A4: $T(\varphi) = x^2 \cdot \varphi(0)$

    Q2: What is correct for the distribution $T = f \cdot \delta$ with a smooth function $f \in C^\infty(\mathbb{R}^n)$?

    A1: $T(\varphi) = 2 \cdot \varphi(0)$

    A2: $T(\varphi) = f(x) \varphi(0)$

    A3: $T(\varphi) = f(0) \varphi(0)$

    Q3: Consider two smooth functions $f,g \in C^\infty(\mathbb{R}^n)$. What is correct for the product $T_f \cdot T_g$?

    A1: $ \langle T_f \cdot T_g , \varphi \rangle = 0$

    A2: $ \langle T_f \cdot T_g , \varphi \rangle = \langle T_{f \cdot g} , \varphi \rangle$

    A3: $ \langle T_f \cdot T_g , \varphi \rangle = \int_{\mathbb{R}^n} f(x) g(x) dx$

    A4: $ \langle T_f \cdot T_g , \varphi \rangle = \int_{\mathbb{R}^n} \varphi(x)dx$

  • Last update: 2024-11

  • Back to overview page