• Title: Convergence of Test Functions

  • Series: Distributions

  • YouTube-Title: Distributions 3 | Convergence of Test Functions

  • Bright video: https://youtu.be/yefkxL-yYjo

  • Dark video: https://youtu.be/o4E4MKPKAKg

  • Ad-free video: Watch Vimeo video

  • Original video for YT-Members (bright): https://youtu.be/HopDSb2ulc4

  • Original video for YT-Members (dark): https://youtu.be/rhHa6zwrP-I

  • Quiz: Test your knowledge

  • PDF: Download PDF version of the bright video

  • Dark-PDF: Download PDF version of the dark video

  • Print-PDF: Download printable PDF version

  • Thumbnail (bright): Download PNG

  • Thumbnail (dark): Download PNG

  • Subtitle on GitHub: dt03_sub_eng.srt missing

  • Timestamps (n/a)
  • Subtitle in English (n/a)
  • Quiz Content

    Q1: Let us consider the set of test functions $\mathcal{D}(\mathbb{R}^n) = C_c^\infty( \mathbb{R}^n)$. What do we mean when we write $$ \varphi_k \xrightarrow[\mathcal{D}]{k \rightarrow \infty} \varphi $$

    A1: The sequence of functions is uniformly convergent.

    A2: There is bounded set such that all supports of $\varphi_k$ lie inside it and the sequence of functions is uniformly convergent.

    A3: There is bounded set such that all supports of $\varphi_k$ lie inside it and $$D^\alpha(\varphi_k) \rightarrow D^\alpha(\varphi)$$ uniformly for all multi-indices.

    Q2: Does the sequence $(\varphi_k)$ with $\varphi_k = 0$ converge in the space $\mathcal{D}(\mathbb{R}^n)$?

    A1: Yes.

    A2: No.

    Q3: Consider the function $\varphi_k \in \mathcal{D}(\mathbb{R}^n)$ given by $$\varphi_k(x) = \begin{cases} 0 &,~ | x | \geq 1 \ \frac{1}{k} \exp\left( - \frac{1}{1 - |x |^2 } \right) &,~ | x | < 1 \end{cases}$$ Which claim is true?

    A1: $$ \varphi_k \xrightarrow[\mathcal{D}]{k \rightarrow \infty} 0 $$

    A2: $$ \varphi_k \xrightarrow[\mathcal{D}]{k \rightarrow \infty} \varphi_1 $$

    A3: $$ \varphi_k \xrightarrow[\mathcal{D}]{k \rightarrow \infty} 1 $$

    A4: $$ \varphi_k \xrightarrow[\mathcal{D}]{k \rightarrow \infty} \varphi_2 $$

  • Last update: 2024-11

  • Back to overview page


Do you search for another mathematical topic?