• Title: Application of the Residue Theorem

  • Series: Complex Analysis

  • YouTube-Title: Complex Analysis 35 | Application of the Residue Theorem

  • Bright video: https://youtu.be/t0Pp3460hoE

  • Dark video: https://youtu.be/jqOtm-WfT4A

  • Quiz: Test your knowledge

  • PDF: Download PDF version of the bright video

  • Dark-PDF: Download PDF version of the dark video

  • Print-PDF: Download printable PDF version

  • Thumbnail (bright): Download PNG

  • Thumbnail (dark): Download PNG

  • Subtitle on GitHub: ca35_sub_eng.srt missing

  • Timestamps (n/a)
  • Subtitle in English (n/a)
  • Quiz Content

    Q1: Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be given by $f(x) = \frac{1}{1+x^2}$. Does the improper Riemann integral $$ \int_{-\infty}^{\infty} f(x) , dx$$ exist?

    A1: Yes!

    A2: No!

    A3: One needs more information.

    Q2: Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be given by $f(x) = \frac{1}{1+x^2}$. Let’s calculate the integral $$ \int_{-\infty}^{\infty} f(x) , dx$$ like shown in the video. Which isolated singularity do we need for that?

    A1: $i$

    A2: $-i$

    A3: $1$

    A4: $-1$

    A5: $0$

    Q3: Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be given by $f(x) = \frac{1}{1+x^2}$. Let’s calculate the integral $$ \int_{-\infty}^{\infty} f(x) , dx$$ like shown in the video. What is the value of this integral?

    A1: $ 2 \pi i \cdot \frac{1}{2 i} = \pi $

    A2: $ 2 \pi i \cdot 0 = 0 $

    A3: $ 2 \pi i \cdot \frac{1}{i} = 2 \pi $

    A4: $ 2 \pi i \cdot \frac{1}{2} = i \pi $

    A5: $ \pi i \cdot \frac{1}{2 i} = \frac{\pi}{2} $

  • Last update: 2024-10

  • Back to overview page