-
Title: Application of the Residue Theorem
-
Series: Complex Analysis
-
YouTube-Title: Complex Analysis 35 | Application of the Residue Theorem
-
Bright video: https://youtu.be/t0Pp3460hoE
-
Dark video: https://youtu.be/jqOtm-WfT4A
-
Ad-free video: Watch Vimeo video
-
Quiz: Test your knowledge
-
Dark-PDF: Download PDF version of the dark video
-
Print-PDF: Download printable PDF version
-
Thumbnail (bright): Download PNG
-
Thumbnail (dark): Download PNG
-
Subtitle on GitHub: ca35_sub_eng.srt missing
-
Timestamps (n/a)
-
Subtitle in English (n/a)
-
Quiz Content
Q1: Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be given by $f(x) = \frac{1}{1+x^2}$. Does the improper Riemann integral $$ \int_{-\infty}^{\infty} f(x) , dx$$ exist?
A1: Yes!
A2: No!
A3: One needs more information.
Q2: Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be given by $f(x) = \frac{1}{1+x^2}$. Let’s calculate the integral $$ \int_{-\infty}^{\infty} f(x) , dx$$ like shown in the video. Which isolated singularity do we need for that?
A1: $i$
A2: $-i$
A3: $1$
A4: $-1$
A5: $0$
Q3: Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be given by $f(x) = \frac{1}{1+x^2}$. Let’s calculate the integral $$ \int_{-\infty}^{\infty} f(x) , dx$$ like shown in the video. What is the value of this integral?
A1: $ 2 \pi i \cdot \frac{1}{2 i} = \pi $
A2: $ 2 \pi i \cdot 0 = 0 $
A3: $ 2 \pi i \cdot \frac{1}{i} = 2 \pi $
A4: $ 2 \pi i \cdot \frac{1}{2} = i \pi $
A5: $ \pi i \cdot \frac{1}{2 i} = \frac{\pi}{2} $
-
Last update: 2024-10