-
Title: Residue
-
Series: Complex Analysis
-
YouTube-Title: Complex Analysis 32 | Residue
-
Bright video: https://youtu.be/BuEoOYbiH04
-
Dark video: https://youtu.be/yLRx9F_vmLw
-
Ad-free video: Watch Vimeo video
-
Quiz: Test your knowledge
-
Dark-PDF: Download PDF version of the dark video
-
Print-PDF: Download printable PDF version
-
Thumbnail (bright): Download PNG
-
Thumbnail (dark): Download PNG
-
Subtitle on GitHub: ca32_sub_eng.srt missing
-
Timestamps (n/a)
-
Subtitle in English (n/a)
-
Quiz Content
Q1: Let $f: D \rightarrow \mathbb{C}$ be a holomorphic function that has an isolated singularity at $z_0$. What is the correct definition of $\mathrm{Res}(f, z_0)$?
A1: $ \frac{1}{2 \pi i} \oint_{\partial B_{\varepsilon}(z_0)} f(z) , dz $
A2: $ \frac{1}{2 \pi} \oint_{\partial B_{\varepsilon}(z_0)} f(z) , dz $
A3: $ 2 \pi i \oint_{\partial B_{\varepsilon}(z_0)} f(z) , dz $
A4: $ \oint_{\partial B_{\varepsilon}(z_0)} f(z) , dz $
Q2: Let $f: \mathbb{C}\setminus { z_0 } \rightarrow \mathbb{C}$ be given $f(z) = \frac{1}{z - z_0}$. What is the value of the residue $\mathrm{Res}(f, z_0)$?
A1: $1$
A2: $ \frac{1}{2 \pi} $
A3: $ 2 \pi i $
A4: $ 0 $
Q3: Let $f: \mathbb{C}\setminus { 0, 1 } \rightarrow \mathbb{C}$ be given $f(z) = -\frac{1}{z(z-1)}$. What is the value of the residue $\mathrm{Res}(f, z_0)$?
A1: $1$
A2: $ \frac{1}{2 \pi} $
A3: $ 2 \pi i $
A4: $ 0 $
A5: $ - 1 $
-
Last update: 2024-10