• Title: Application of the Identity Theorem

  • Series: Complex Analysis

  • YouTube-Title: Complex Analysis 31 | Application of the Identity Theorem

  • Bright video: https://youtu.be/rsYF_OHo__8

  • Dark video: https://youtu.be/SwynIS_9SvI

  • Ad-free video: Watch Vimeo video

  • Quiz: Test your knowledge

  • PDF: Download PDF version of the bright video

  • Dark-PDF: Download PDF version of the dark video

  • Print-PDF: Download printable PDF version

  • Thumbnail (bright): Download PNG

  • Thumbnail (dark): Download PNG

  • Subtitle on GitHub: ca31_sub_eng.srt missing

  • Timestamps (n/a)
  • Subtitle in English (n/a)
  • Quiz Content

    Q1: Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be a holomorphic function given by $f(x) = \cos(x)$ for all $x \in \mathbb{R}$. What is correct?

    A1: For all $z \in \mathbb{C}$, we have $f(z) = \sum_{j=0}^\infty \frac{(-1)^j}{(2j)!} z^{2j}$.

    A2: For all $z \in \mathbb{C}$, we have $f(z) = \sum_{j=0}^\infty \frac{(-1)^j}{(2j+1)!} z^{2j+1}$.

    A3: There are infinitely many functions $f$ that satisfy the conditions.

    A4: There are exactly two functions $f$ that satisfy the conditions.

    Q2: Let $f: \mathbb{R}\rightarrow \mathbb{R}$ be a $C^\infty$-function. What is correct?

    A1: There is at most one function $g: \mathbb{C} \rightarrow \mathbb{C}$ that is holomorphic and satisfies $g(x) = f(x)$ for all $x \in \mathbb{R}$.

    A2: There is at most one function $g: \mathbb{C} \rightarrow \mathbb{C}$ that satisfies $g(x) = f(x)$ for all $x \in \mathbb{R}$.

    A3: There are two holomorphic functions $g: \mathbb{C} \rightarrow \mathbb{C}$ that satisfy $g(x) = f(x)$ for all $x \in \mathbb{R}$.

  • Last update: 2024-10

  • Back to overview page


Do you search for another mathematical topic?