• Title: Identity Theorem

  • Series: Complex Analysis

  • YouTube-Title: Complex Analysis 30 | Identity Theorem

  • Bright video: https://youtu.be/nFHEq7ljd0k

  • Dark video: https://youtu.be/aAINMsQ8ZGY

  • Ad-free video: Watch Vimeo video

  • Quiz: Test your knowledge

  • PDF: Download PDF version of the bright video

  • Dark-PDF: Download PDF version of the dark video

  • Print-PDF: Download printable PDF version

  • Thumbnail (bright): Download PNG

  • Thumbnail (dark): Download PNG

  • Subtitle on GitHub: ca30_sub_eng.srt missing

  • Timestamps (n/a)
  • Subtitle in English (n/a)
  • Quiz Content

    Q1: Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be a holomorphic function with $f(\frac{1}{n}) = 0$ for all $n \in \mathbb{N}$. What is correct?

    A1: Only the function $f(z) = 0$ satisfies the condition above.

    A2: Only the two functions $f_1(z) = 0$ and $ f_2(z) = \sin \left( 2 \pi \frac{1}{z} \right) $ satisfy the conditions above.

    A3: There are infinitely many functions that fulfil the conditions above.

    A4: One needs more information.

    Q2: Let $f: \mathbb{C}\setminus{0} \rightarrow \mathbb{C}$ be a holomorphic function with $f(\frac{1}{n}) = 0$ for all $n \in \mathbb{N}$. What is correct?

    A1: Only the function $f(z) = 0$ satisfies the condition above.

    A2: The two functions $f_1(z) = 0$ and $ f_2(z) = \sin \left( 2 \pi \frac{1}{z} \right) $ satisfy the conditions above.

    A3: One needs more information.

    Q3: Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be a holomorphic function with $f(n) = 0$ for all $n \in \mathbb{N}$. What is correct?

    A1: Only the function $f(z) = 0$ satisfies the condition above.

    A2: The two functions $f_1(z) = 0$ and $ f_2(z) = \sin \left( 2 \pi z \right) $ satisfy the conditions above.

    A3: One needs more information.

  • Last update: 2024-10

  • Back to overview page


Do you search for another mathematical topic?