-
Title: Identity Theorem
-
Series: Complex Analysis
-
YouTube-Title: Complex Analysis 30 | Identity Theorem
-
Bright video: https://youtu.be/nFHEq7ljd0k
-
Dark video: https://youtu.be/aAINMsQ8ZGY
-
Ad-free video: Watch Vimeo video
-
Quiz: Test your knowledge
-
Dark-PDF: Download PDF version of the dark video
-
Print-PDF: Download printable PDF version
-
Thumbnail (bright): Download PNG
-
Thumbnail (dark): Download PNG
-
Subtitle on GitHub: ca30_sub_eng.srt missing
-
Timestamps (n/a)
-
Subtitle in English (n/a)
-
Quiz Content
Q1: Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be a holomorphic function with $f(\frac{1}{n}) = 0$ for all $n \in \mathbb{N}$. What is correct?
A1: Only the function $f(z) = 0$ satisfies the condition above.
A2: Only the two functions $f_1(z) = 0$ and $ f_2(z) = \sin \left( 2 \pi \frac{1}{z} \right) $ satisfy the conditions above.
A3: There are infinitely many functions that fulfil the conditions above.
A4: One needs more information.
Q2: Let $f: \mathbb{C}\setminus{0} \rightarrow \mathbb{C}$ be a holomorphic function with $f(\frac{1}{n}) = 0$ for all $n \in \mathbb{N}$. What is correct?
A1: Only the function $f(z) = 0$ satisfies the condition above.
A2: The two functions $f_1(z) = 0$ and $ f_2(z) = \sin \left( 2 \pi \frac{1}{z} \right) $ satisfy the conditions above.
A3: One needs more information.
Q3: Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be a holomorphic function with $f(n) = 0$ for all $n \in \mathbb{N}$. What is correct?
A1: Only the function $f(z) = 0$ satisfies the condition above.
A2: The two functions $f_1(z) = 0$ and $ f_2(z) = \sin \left( 2 \pi z \right) $ satisfy the conditions above.
A3: One needs more information.
-
Last update: 2024-10