-
Title: Liouville’s Theorem
-
Series: Complex Analysis
-
YouTube-Title: Complex Analysis 29 | Liouville’s Theorem
-
Bright video: https://youtu.be/RfJ2bOfsdgY
-
Dark video: https://youtu.be/aG7qQcoElYU
-
Quiz: Test your knowledge
-
Dark-PDF: Download PDF version of the dark video
-
Print-PDF: Download printable PDF version
-
Thumbnail (bright): Download PNG
-
Thumbnail (dark): Download PNG
-
Subtitle on GitHub: ca29_sub_eng.srt missing
-
Timestamps (n/a)
-
Subtitle in English (n/a)
-
Quiz Content
Q1: Let $f: D \rightarrow \mathbb{C}$ be a holomorphic function where $\overline{B_r(z_0)} \subseteq D$. What is the correct Cauchy’s inequality?
A1: $$| f^\prime(z_0) | = \frac{1}{r} \sup_{ z \in \partial B_r(z_0)} | f(z) |$$
A2: $$| f^\prime(z_0) | = \frac{1}{r^2} \sup_{ z \in \partial B_r(z_0)} | f(z) |$$
A3: $$| f^\prime(z_0) | = \frac{1}{r^3} \sup_{ z \in \partial B_r(z_0)} | f(z) |$$
A4: $$| f^\prime(z_0) | = \frac{4}{r^2} \sup_{ z \in \partial B_r(z_0)} | f(z) |$$
Q2: Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be a holomorphic function given by $f(z) = \cos(z)$. Is there a $z_1$ with $|\cos(z_1)| \geq 10$?
A1: Yes, there is.
A2: Yes, but $z \in \mathbb{R}$.
A3: No, $\cos$ is bounded.
Q3: Let $f: D \rightarrow \mathbb{C}$ be a holomorphic function that is bounded and not constant. Is it possible that $D = \mathbb{C}$?
A1: No, that is not possible.
A2: Yes, there are a lot of examples.
-
Last update: 2024-10