-
Title: Holomorphic Functions are C-infinity Functions
-
Series: Complex Analysis
-
YouTube-Title: Complex Analysis 28 | Holomorphic Functions are C-infinity Functions
-
Bright video: https://youtu.be/X_g5d5_e7iQ
-
Dark video: https://youtu.be/G1MhLleHz28
-
Ad-free video: Watch Vimeo video
-
Quiz: Test your knowledge
-
Dark-PDF: Download PDF version of the dark video
-
Print-PDF: Download printable PDF version
-
Thumbnail (bright): Download PNG
-
Thumbnail (dark): Download PNG
-
Subtitle on GitHub: ca28_sub_eng.srt missing
-
Timestamps (n/a)
-
Subtitle in English (n/a)
-
Quiz Content
Q1: Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a differentiable function. Does the second-order derivative $f^{\prime \prime}$ exist at each point?
A1: Yes, always.
A2: No, never.
A3: One need more information.
Q2: Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be a complex-differentiable function. Does the second-order derivative $f^{\prime \prime}$ exist at each point?
A1: Yes, always.
A2: No, never.
A3: One need more information.
Q3: Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be a complex-differentiable function. Which formula for $f^{\prime \prime}$ is correct?
A1: $$ f^{\prime \prime}(z) = \frac{1}{ \pi i} \oint_{\partial B_1(0) } \frac{ f(\zeta) }{ (\zeta - z)^{3} } , d \zeta $$
A2: $$ f^{\prime \prime}(z) = \frac{2!}{ \pi i} \oint_{\partial B_1(0) } \frac{ f(\zeta) }{ (\zeta - z)^{2} } , d \zeta $$
A3: $$ f^{\prime \prime}(z) = \frac{2!}{ 4 \pi i} \oint_{\partial B_1(0) } \frac{ f(\zeta) }{ (\zeta - z)^{2} } , d \zeta $$
A4: $$ f^{\prime \prime}(z) = \frac{2!}{ 4 \pi i} \oint_{\partial B_1(0) } \frac{ f(\zeta) }{ (\zeta - z)^{3} } , d \zeta $$
-
Last update: 2024-10