• Title: Cauchy’s Theorem (general version)

  • Series: Complex Analysis

  • YouTube-Title: Complex Analysis 25 | Cauchy’s Theorem (general version)

  • Bright video: https://youtu.be/f3fNmR995ik

  • Dark video: https://youtu.be/iXOFqNsETzI

  • Ad-free video: Watch Vimeo video

  • Quiz: Test your knowledge

  • PDF: Download PDF version of the bright video

  • Dark-PDF: Download PDF version of the dark video

  • Print-PDF: Download printable PDF version

  • Thumbnail (bright): Download PNG

  • Thumbnail (dark): Download PNG

  • Subtitle on GitHub: ca25_sub_eng.srt missing

  • Timestamps (n/a)
  • Subtitle in English (n/a)
  • Quiz Content

    Q1: Let $D = \mathbb{C} \setminus { z \in \mathbb{R} \mid z \leq 0 }$ and $\gamma$ be a closed curve in $D$. What is the winding number $ \mathrm{wind}(\gamma, 0) $?

    A1: $ 0 $

    A2: $ 1$

    A3: $ -1$

    A4: $ 2$

    A5: One needs more information!

    Q2: Let $\gamma$ be a closed curve. What is the definition of the exterior $\mathrm{Ext}(\gamma)$?

    A1: $ \mathrm{Ext}(\gamma) = { z \in \mathbb{C} \setminus \mathrm{Ran}(\gamma) \mid \mathrm{wind}(\gamma, z) = 0 }$

    A2: $ \mathrm{Ext}(\gamma) = { z \in \mathbb{C} \setminus \mathrm{Ran}(\gamma) \mid \mathrm{wind}(\gamma, z) \neq 0 }$

    A3: $ \mathrm{Ext}(\gamma) = { z \in \mathbb{C} \setminus \mathrm{Ran}(\gamma) \mid \mathrm{wind}(\gamma, z) = 1 }$

    A4: $ \mathrm{Ext}(\gamma) = { z \in \mathbb{C} \setminus \mathrm{Ran}(\gamma) \mid \mathrm{wind}(\gamma, 0) = z }$

    A5: $ \mathrm{Ext}(\gamma) = { z \in \mathbb{C} \setminus \mathrm{Ran}(\gamma) \mid \mathrm{wind}(\gamma, z) \geq 0 }$

    Q3: Let $f : D \rightarrow \mathbb{C}$ be holomorphic and $\gamma: [a,b] \rightarrow D$ be a closed curve. Which claim is in general not correct?

    A1: $ \oint_{\gamma} f(z) , dz = 0 $, no matter which open domain one chooses for $D$.

    A2: $ \oint_{\gamma} f(z) , dz = 0 $ if $D$ is a star domain.

    A3: $ \oint_{\gamma} f(z) , dz = 0 $ if $D$ is a convex set.

    A4: $ \oint_{\gamma} f(z) , dz = 0 $ if $D$ is a slitted plane.

    A5: $ \oint_{\gamma} f(z) , dz = 0 $ if $D$ is a disc.

  • Last update: 2024-10

  • Back to overview page


Do you search for another mathematical topic?