-
Title: Winding Number
-
Series: Complex Analysis
-
YouTube-Title: Complex Analysis 24 | Winding Number
-
Bright video: https://youtu.be/FNvwQaKmQ2A
-
Dark video: https://youtu.be/40wcBZZcI0w
-
Ad-free video: Watch Vimeo video
-
Quiz: Test your knowledge
-
Dark-PDF: Download PDF version of the dark video
-
Print-PDF: Download printable PDF version
-
Thumbnail (bright): Download PNG
-
Thumbnail (dark): Download PNG
-
Subtitle on GitHub: ca24_sub_eng.srt missing
-
Timestamps (n/a)
-
Subtitle in English (n/a)
-
Quiz Content
Q1: Let $\gamma: [a,b] \rightarrow \mathbb{C}$ be a curve where the image is the unit circle. What is correct for $z_0 = 5 + 5 i$?
A1: $ \mathrm{wind}(\gamma, z_0) = 0$
A2: $ \mathrm{wind}(\gamma, z_0) = 1$
A3: $ \mathrm{wind}(\gamma, z_0) = -1$
A4: $ \mathrm{wind}(\gamma, z_0) = 2$
Q2: Let $\gamma: [0,2] \rightarrow \mathbb{C}$ be given by $\gamma(t) = \exp(2\pi i t)$. Which statement is correct?
A1: $ \mathrm{wind}(\gamma, 0) = 2$
A2: $ \mathrm{wind}(\gamma, 2) = 1$
A3: $ \mathrm{wind}(\gamma, 0) = -1$
A4: $ \mathrm{wind}(\gamma, 1)$ is well-defined.
A5: $ \mathrm{wind}(\gamma, 2) = 2$
Q3: Let $\gamma: [0,1] \rightarrow \mathbb{C}$ given by $\gamma(t) = \exp(-2\pi i t)$. What is the winding number of $\gamma$ with respect to the origin?
A1: $-1$
A2: $0$
A3: $1$
A4: $2$
A5: $-2$
-
Last update: 2024-10