• Title: Winding Number

  • Series: Complex Analysis

  • YouTube-Title: Complex Analysis 24 | Winding Number

  • Bright video: https://youtu.be/FNvwQaKmQ2A

  • Dark video: https://youtu.be/40wcBZZcI0w

  • Ad-free video: Watch Vimeo video

  • Quiz: Test your knowledge

  • PDF: Download PDF version of the bright video

  • Dark-PDF: Download PDF version of the dark video

  • Print-PDF: Download printable PDF version

  • Thumbnail (bright): Download PNG

  • Thumbnail (dark): Download PNG

  • Subtitle on GitHub: ca24_sub_eng.srt missing

  • Timestamps (n/a)
  • Subtitle in English (n/a)
  • Quiz Content

    Q1: Let $\gamma: [a,b] \rightarrow \mathbb{C}$ be a curve where the image is the unit circle. What is correct for $z_0 = 5 + 5 i$?

    A1: $ \mathrm{wind}(\gamma, z_0) = 0$

    A2: $ \mathrm{wind}(\gamma, z_0) = 1$

    A3: $ \mathrm{wind}(\gamma, z_0) = -1$

    A4: $ \mathrm{wind}(\gamma, z_0) = 2$

    Q2: Let $\gamma: [0,2] \rightarrow \mathbb{C}$ be given by $\gamma(t) = \exp(2\pi i t)$. Which statement is correct?

    A1: $ \mathrm{wind}(\gamma, 0) = 2$

    A2: $ \mathrm{wind}(\gamma, 2) = 1$

    A3: $ \mathrm{wind}(\gamma, 0) = -1$

    A4: $ \mathrm{wind}(\gamma, 1)$ is well-defined.

    A5: $ \mathrm{wind}(\gamma, 2) = 2$

    Q3: Let $\gamma: [0,1] \rightarrow \mathbb{C}$ given by $\gamma(t) = \exp(-2\pi i t)$. What is the winding number of $\gamma$ with respect to the origin?

    A1: $-1$

    A2: $0$

    A3: $1$

    A4: $2$

    A5: $-2$

  • Last update: 2024-10

  • Back to overview page


Do you search for another mathematical topic?