-
Title: Cauchy’s theorem
-
Series: Complex Analysis
-
YouTube-Title: Complex Analysis 23 | Cauchy’s theorem
-
Bright video: https://youtu.be/2yqtl0Sm8f4
-
Dark video: https://youtu.be/2-u3cT_JysU
-
Ad-free video: Watch Vimeo video
-
Quiz: Test your knowledge
-
Dark-PDF: Download PDF version of the dark video
-
Print-PDF: Download printable PDF version
-
Thumbnail (bright): Download PNG
-
Thumbnail (dark): Download PNG
-
Subtitle on GitHub: ca23_sub_eng.srt missing
-
Timestamps (n/a)
-
Subtitle in English (n/a)
-
Quiz Content
Q1: Let $f : D \rightarrow \mathbb{C}$ be a holomorphic function and $\gamma$ be a curve in $D$ where the image is a polygon. Which statement is correct?
A1: One needs more information.
A2: $$ \oint_{\gamma} f(z) , dz = 0 $$
A3: $$ \oint_{\gamma} f(z) , dz \neq 0 $$
A4: $$ \oint_{\gamma} f(z) , dz = 1 $$
Q2: Let $f : \mathbb{C} \rightarrow \mathbb{C}$ be given by $f(z) = \cos(z)$ and $\gamma$ be a closed curve in $D$. Which statement is correct?
A1: $$ \oint_{\gamma} f(z) , dz = 0 $$
A2: One needs more information.
A3: $$ \oint_{\gamma} f(z) , dz \neq 0 $$
A4: $$ \oint_{\gamma} f(z) , dz = 1 $$
A5: $$ \oint_{\gamma} f(z) , dz = 2 \pi i $$
Q3: Let $D = B_{1}(2i)$ and $f : D \rightarrow \mathbb{C}$ be given by $f(z) = \frac{1}{z}$. In addition, let $\gamma$ be a closed curve in $D$. Which statement is correct?
A1: One needs more information.
A2: $$ \oint_{\gamma} f(z) , dz = 0 $$
A3: $$ \oint_{\gamma} f(z) , dz \neq 0 $$
A4: $$ \oint_{\gamma} f(z) , dz = 1 $$
-
Last update: 2024-10