• Title: Cauchy’s theorem

  • Series: Complex Analysis

  • YouTube-Title: Complex Analysis 23 | Cauchy’s theorem

  • Bright video: https://youtu.be/2yqtl0Sm8f4

  • Dark video: https://youtu.be/2-u3cT_JysU

  • Ad-free video: Watch Vimeo video

  • Quiz: Test your knowledge

  • PDF: Download PDF version of the bright video

  • Dark-PDF: Download PDF version of the dark video

  • Print-PDF: Download printable PDF version

  • Thumbnail (bright): Download PNG

  • Thumbnail (dark): Download PNG

  • Subtitle on GitHub: ca23_sub_eng.srt missing

  • Timestamps (n/a)
  • Subtitle in English (n/a)
  • Quiz Content

    Q1: Let $f : D \rightarrow \mathbb{C}$ be a holomorphic function and $\gamma$ be a curve in $D$ where the image is a polygon. Which statement is correct?

    A1: One needs more information.

    A2: $$ \oint_{\gamma} f(z) , dz = 0 $$

    A3: $$ \oint_{\gamma} f(z) , dz \neq 0 $$

    A4: $$ \oint_{\gamma} f(z) , dz = 1 $$

    Q2: Let $f : \mathbb{C} \rightarrow \mathbb{C}$ be given by $f(z) = \cos(z)$ and $\gamma$ be a closed curve in $D$. Which statement is correct?

    A1: $$ \oint_{\gamma} f(z) , dz = 0 $$

    A2: One needs more information.

    A3: $$ \oint_{\gamma} f(z) , dz \neq 0 $$

    A4: $$ \oint_{\gamma} f(z) , dz = 1 $$

    A5: $$ \oint_{\gamma} f(z) , dz = 2 \pi i $$

    Q3: Let $D = B_{1}(2i)$ and $f : D \rightarrow \mathbb{C}$ be given by $f(z) = \frac{1}{z}$. In addition, let $\gamma$ be a closed curve in $D$. Which statement is correct?

    A1: One needs more information.

    A2: $$ \oint_{\gamma} f(z) , dz = 0 $$

    A3: $$ \oint_{\gamma} f(z) , dz \neq 0 $$

    A4: $$ \oint_{\gamma} f(z) , dz = 1 $$

  • Last update: 2024-10

  • Back to overview page


Do you search for another mathematical topic?