• Title: Complex Contour Integral

  • Series: Complex Analysis

  • YouTube-Title: Complex Analysis 18 | Complex Contour Integral

  • Bright video: https://youtu.be/qk7gqhuFrj0

  • Dark video: https://youtu.be/pA_jfc2RCUM

  • Ad-free video: Watch Vimeo video

  • Quiz: Test your knowledge

  • PDF: Download PDF version of the bright video

  • Dark-PDF: Download PDF version of the dark video

  • Print-PDF: Download printable PDF version

  • Thumbnail (bright): Download PNG

  • Thumbnail (dark): Download PNG

  • Subtitle on GitHub: ca18_sub_eng.srt missing

  • Timestamps (n/a)
  • Subtitle in English (n/a)
  • Quiz Content

    Q1: What is the correct definition for $$ \int_\gamma f(z) , dz $$ if $\gamma: [0,1] \rightarrow \mathbb{C}$ is a parametrized curve?

    A1: $ \int_0^1 \gamma(t) dt $

    A2: $ \int_0^1 \gamma(t) f^\prime(t) dt $

    A3: $ \int_0^1 \gamma^\prime(t) f^\prime(t) dt $

    A4: $ \int_0^1 f(\gamma(t)) f^\prime(t) dt $

    A5: $ \int_0^1 f(\gamma(t)) \gamma^\prime(t) dt $

    A6: $ \int_0^1 f(\gamma^\prime(t)) \gamma dt $

    Q2: Let $\gamma: [0,2 \pi] \rightarrow \mathbb{C}$ be given by $\gamma(t) = e^{it}$ and $f(z) = z^2$. What is $ \int_\gamma f(z) , dz $?

    A1: $0$

    A2: $1$

    A3: $2$

    A4: $i$

    Q3: Let $\gamma: [0,\pi] \rightarrow \mathbb{C}$ be given by $\gamma(t) = e^{it}$ and $f(z) = \overline{z}$. What is $ \int_\gamma f(z) , dz $?

    A1: $1$

    A2: $\frac{1}{2}$

    A3: $\frac{1}{\pi}$

    A4: $i \pi $

  • Last update: 2024-10

  • Back to overview page


Do you search for another mathematical topic?