• Title: Laurent Series

  • Series: Complex Analysis

  • YouTube-Title: Complex Analysis 15 | Laurent Series

  • Bright video: https://youtu.be/JH9eRAb1x7I

  • Dark video: https://youtu.be/lnkAj2tflt8

  • Ad-free video: Watch Vimeo video

  • Quiz: Test your knowledge

  • PDF: Download PDF version of the bright video

  • Dark-PDF: Download PDF version of the dark video

  • Print-PDF: Download printable PDF version

  • Thumbnail (bright): Download PNG

  • Thumbnail (dark): Download PNG

  • Subtitle on GitHub: ca15_sub_eng.srt missing

  • Timestamps

    00:00 Intro

    00:14 Generalization of power series

    00:47 Radius of convergence

    01:35 Consider inverse of complex numbers

    02:20 Second radius of convergence for outside world

    02:56 Series with negative powers is holomorphic

    04:15 Two series combined gives holomorphic function

    05:43 Definition Laurent Series

    06:42 Principal part of Laurent Series

    06:55 Residue of Laurent Series

    07:20 Domain is a generalized ring

    08:06 Credits

  • Subtitle in English (n/a)
  • Quiz Content

    Q1: Let $\sum_{k=0}^\infty a_k z^k$ be a power series. Which value is not possible for the radius of convergence?

    A1: $r = 0$

    A2: $r = 0.5$

    A3: $r = \pi$

    A4: $r = \infty$

    A5: $r = -\infty$

    Q2: Let $\sum_{k=0}^\infty a_k z^k$ be a power series with radius of convergence $r = 2$. What is the domain of the holomomorphic function? $$w \mapsto \sum_{k=0}^\infty a_k \left( \frac{1}{w} \right)^k$$

    A1: $\mathbb{C}$

    A2: $\mathbb{C} \setminus \overline{B_{\frac{1}{2}}(0)}$

    A3: $\mathbb{C} \setminus \overline{B_{2}(0)}$

    A4: $\mathbb{C} \setminus B_{2}(0)$

    Q3: Let $f(z) = \sum_{k=0}^\infty a_k z^k$ be a power series with radius of convergence $r = 2$. What is the derivative of the following function? $$g(w) = \sum_{k=0}^\infty a_k \left( \frac{1}{w} \right)^k$$

    A1: $g^\prime(w) = f^\prime(w) $

    A2: $g^\prime(w) = f^\prime(w^{-1}) $

    A3: $g^\prime(w) = f^\prime(w^{-1}) \cdot \left( - \frac{1}{w^2} \right) $

    A4: $g^\prime(w) = f^\prime(z) $

    Q4: Let $f(z) = \sum_{k=0}^\infty a_k (z-z_0)^k$ be a power series with radius of convergence $r = 2$. What is the domain of the Laurent series $$\sum_{k=-2}^\infty a_k (z-z_0)^k $$ with $a_{-2} = a_{-1} = 1$?

    A1: ${ z \in \mathbb{C} \mid 0 < | z - z_0 | < 2}$

    A2: ${ z \in \mathbb{C} \mid \frac{1}{2} < | z - z_0 | < 2}$

    A3: ${ z \in \mathbb{C} \mid \frac{1}{2} < | z - z_0 | < \infty}$

    A4: ${ z \in \mathbb{C} \mid 0 < | z - z_0 | < \frac{1}{2}}$

  • Last update: 2024-10

  • Back to overview page


Do you search for another mathematical topic?