• Title: Klein Four-Group

  • Series: Algebra

  • YouTube-Title: Algebra 11 | Klein Four-Group

  • Bright video: https://youtu.be/YakBqCwtBTU

  • Dark video: https://youtu.be/e5Q8VGC4Zwc

  • Quiz: Test your knowledge

  • PDF: Download PDF version of the bright video

  • Dark-PDF: Download PDF version of the dark video

  • Print-PDF: Download printable PDF version

  • Thumbnail (bright): Download PNG

  • Thumbnail (dark): Download PNG

  • Subtitle on GitHub: alg11_sub_eng.srt missing

  • Timestamps (n/a)
  • Subtitle in English (n/a)
  • Quiz Content

    Q1: Let $(G, \circ)$ be a group and $H \subseteq G$ be a subset. What does $H \leq G$ mean?

    A1: $H$ together with the binary operation $\circ$ forms a group.

    A2: $H$ is empty.

    A3: The neutral element of $(G, \circ)$ is not an element of $H$.

    A4: $H$ is biggest subgroup of $G$.

    Q2: Let $(G, \circ)$ be a group and $H \subseteq G$ be a non-empty subset. What is equivalent to $H \leq G$?

    A1: $a \circ b \in H$ and $a^{-1} \in H$ for every $a,b \in H$.

    A2: $a \circ b \in H$ and $a \in H$ for every $a,b \in H$.

    A3: $a \circ b \in H$ and $a^{-1} \in H$ for every $a,b \in G$.

    A4: $a \circ b^{-1} \in H$ for every $a,b \in G$.

    Q3: Let $(G, \circ)$ be a group with four elements. What is always correct?

    A1: $G$ is an abelian group.

    A2: $G$ is the Klein four group.

    A3: $G$ is $\mathbb{Z}/4\mathbb{Z}$

    A4: $G$ has 3 subgroups.

  • Last update: 2024-11

  • Back to overview page