• Title: Group Homomorphisms

  • Series: Algebra

  • YouTube-Title: Algebra 9 | Group Homomorphisms

  • Bright video: https://youtu.be/FwfVr5YANRI

  • Dark video: https://youtu.be/xmXdklBK9v4

  • Quiz: Test your knowledge

  • PDF: Download PDF version of the bright video

  • Dark-PDF: Download PDF version of the dark video

  • Print-PDF: Download printable PDF version

  • Thumbnail (bright): Download PNG

  • Thumbnail (dark): Download PNG

  • Subtitle on GitHub: alg09_sub_eng.srt missing

  • Timestamps (n/a)
  • Subtitle in English (n/a)
  • Quiz Content

    Q1: Let $(G, \circ)$ be a group. Is $\varphi: G \rightarrow G$ given by $\varphi(x) = x$ a group homomorphism?

    A1: Yes, it always is.

    A2: No, there are counterexamples.

    A3: No, never.

    Q2: Let $(G, \circ)$ and $(H, \ast)$ be two groups. What is not always correct for a group homomorphism $\varphi: G \rightarrow H$?

    A1: $\varphi$ is injective

    A2: $\varphi(x \circ y) = \varphi(x) \ast \varphi(y)$

    A3: $\varphi(e_G) = e_H$

    A4: $\varphi(a)^{-1} = \varphi(a^{-1})$

    A5: $\varphi(a^{-1}) \ast \varphi(a) = e_H $

    Q3: Let $({ a,b }, \circ)$ and $({ c, d }, \ast)$ be two groups. What is always correct for a group homomorphism $\varphi: G \rightarrow H$?

    A1: $\varphi$ is injective.

    A2: If $\varphi$ is injective, then $\varphi$ is bijective.

    A3: $\varphi$ is surjective.

    A4: $\varphi$ is bijective.

    A5: If $\varphi$ satisfies $\varphi(a^{-1}) = \varphi(a)^{-1}$, then $\varphi$ is bijective.

  • Last update: 2024-11

  • Back to overview page