-
Title: Group Homomorphisms
-
Series: Algebra
-
YouTube-Title: Algebra 9 | Group Homomorphisms
-
Bright video: https://youtu.be/FwfVr5YANRI
-
Dark video: https://youtu.be/xmXdklBK9v4
-
Quiz: Test your knowledge
-
Dark-PDF: Download PDF version of the dark video
-
Print-PDF: Download printable PDF version
-
Thumbnail (bright): Download PNG
-
Thumbnail (dark): Download PNG
-
Subtitle on GitHub: alg09_sub_eng.srt missing
-
Timestamps (n/a)
-
Subtitle in English (n/a)
-
Quiz Content
Q1: Let $(G, \circ)$ be a group. Is $\varphi: G \rightarrow G$ given by $\varphi(x) = x$ a group homomorphism?
A1: Yes, it always is.
A2: No, there are counterexamples.
A3: No, never.
Q2: Let $(G, \circ)$ and $(H, \ast)$ be two groups. What is not always correct for a group homomorphism $\varphi: G \rightarrow H$?
A1: $\varphi$ is injective
A2: $\varphi(x \circ y) = \varphi(x) \ast \varphi(y)$
A3: $\varphi(e_G) = e_H$
A4: $\varphi(a)^{-1} = \varphi(a^{-1})$
A5: $\varphi(a^{-1}) \ast \varphi(a) = e_H $
Q3: Let $({ a,b }, \circ)$ and $({ c, d }, \ast)$ be two groups. What is always correct for a group homomorphism $\varphi: G \rightarrow H$?
A1: $\varphi$ is injective.
A2: If $\varphi$ is injective, then $\varphi$ is bijective.
A3: $\varphi$ is surjective.
A4: $\varphi$ is bijective.
A5: If $\varphi$ satisfies $\varphi(a^{-1}) = \varphi(a)^{-1}$, then $\varphi$ is bijective.
-
Last update: 2024-11