-
Title: Integers Modulo m ⤳ Abelian Group
-
Series: Algebra
-
YouTube-Title: Algebra 8 | Integers Modulo m ⤳ Abelian Group
-
Bright video: https://youtu.be/s6dUlR3TrgI
-
Dark video: https://youtu.be/4IS-VVlzwBM
-
Ad-free video: Watch Vimeo video
-
Quiz: Test your knowledge
-
Dark-PDF: Download PDF version of the dark video
-
Print-PDF: Download printable PDF version
-
Thumbnail (bright): Download PNG
-
Thumbnail (dark): Download PNG
-
Subtitle on GitHub: alg08_sub_eng.srt missing
-
Timestamps (n/a)
-
Subtitle in English (n/a)
-
Quiz Content
Q1: Given a natural number $m \in \mathbb{N}$, is it possible to find an abelian group of order $m$?
A1: Yes, we can take the group $\mathbb{Z}/m \mathbb{Z}$.
A2: No, but for prime numbers $m$ we can take the group $\mathbb{Z}/m \mathbb{Z}$.
A3: No, we $m = 5$ there is no abelian group.
A4: Yes, we can take the symmetric group $S_m$.
Q2: Which of the following statements is not correct?
A1: $7 = 1 \mod 2$
A2: $7 = 7 \mod 8$
A3: $7 = 3 \mod 2$
A4: $17 = 10 \mod 7$
A5: $20 = 10 \mod 11$
-
Last update: 2024-11