-
Title: Identities and Inverses
-
Series: Algebra
-
YouTube-Title: Algebra 3 | Identities and Inverses
-
Bright video: https://youtu.be/yVSwCTd8lSo
-
Dark video: https://youtu.be/JH8G6yjUeNE
-
Quiz: Test your knowledge
-
Dark-PDF: Download PDF version of the dark video
-
Print-PDF: Download printable PDF version
-
Thumbnail (bright): Download PNG
-
Thumbnail (dark): Download PNG
-
Subtitle on GitHub: alg03_sub_eng.srt missing
-
Timestamps (n/a)
-
Subtitle in English (n/a)
-
Quiz Content
Q1: Consider a semigroup with only one element $a$. What is correct?
A1: $a$ is an identity.
A2: $a$ is not a left neutral element.
A3: $a$ is not a right identity.
Q2: Consider the function set $\mathcal{F}([0,1])$ together with the composition. Is $f(x) = \frac{1}{2} x^2$ right-invertible?
A1: No, it’s not because the function is not surjective.
A2: Yes, it is.
A3: No, it’s not because the function is not injective.
Q3: Consider the function set $\mathcal{F}([0,1])$ together with the composition. Is $f(x) = \frac{1}{2} x^2$ left-invertible?
A1: No, it’s not because the function is not surjective.
A2: Yes, it is.
A3: No, it’s not because the function is not injective.
-
Last update: 2024-11