• Title: Identities and Inverses

  • Series: Algebra

  • YouTube-Title: Algebra 3 | Identities and Inverses

  • Bright video: https://youtu.be/yVSwCTd8lSo

  • Dark video: https://youtu.be/JH8G6yjUeNE

  • Quiz: Test your knowledge

  • PDF: Download PDF version of the bright video

  • Dark-PDF: Download PDF version of the dark video

  • Print-PDF: Download printable PDF version

  • Thumbnail (bright): Download PNG

  • Thumbnail (dark): Download PNG

  • Subtitle on GitHub: alg03_sub_eng.srt missing

  • Timestamps (n/a)
  • Subtitle in English (n/a)
  • Quiz Content

    Q1: Consider a semigroup with only one element $a$. What is correct?

    A1: $a$ is an identity.

    A2: $a$ is not a left neutral element.

    A3: $a$ is not a right identity.

    Q2: Consider the function set $\mathcal{F}([0,1])$ together with the composition. Is $f(x) = \frac{1}{2} x^2$ right-invertible?

    A1: No, it’s not because the function is not surjective.

    A2: Yes, it is.

    A3: No, it’s not because the function is not injective.

    Q3: Consider the function set $\mathcal{F}([0,1])$ together with the composition. Is $f(x) = \frac{1}{2} x^2$ left-invertible?

    A1: No, it’s not because the function is not surjective.

    A2: Yes, it is.

    A3: No, it’s not because the function is not injective.

  • Last update: 2024-11

  • Back to overview page