-
Title: Solutions for Linear Equations
-
Series: Abstract Linear Algebra
-
YouTube-Title: Abstract Linear Algebra 31 | Solutions for Linear Equations
-
Bright video: https://youtu.be/6O7-QBPYpNo
-
Dark video: https://youtu.be/FQpdLA6lcv0
-
Quiz: Test your knowledge
-
Dark-PDF: Download PDF version of the dark video
-
Print-PDF: Download printable PDF version
-
Thumbnail (bright): Download PNG
-
Thumbnail (dark): Download PNG
-
Subtitle on GitHub: ala31_sub_eng.srt missing
-
Timestamps (n/a)
-
Subtitle in English (n/a)
-
Quiz Content
Q1: Let $\ell: V \rightarrow W$ be a linear map. What is correct?
A1: $\mathrm{Ran}(\ell) \subseteq W$
A2: $\mathrm{Ran}(\ell) \subseteq V$
A3: $\mathrm{Ran}(\ell) = V$
A4: $\mathrm{Ran}(\ell) = W$
A5: $\mathrm{Ran}(\ell) \in V$
A6: $\mathrm{Ran}(\ell) \in W$
Q2: Let $\ell: V \rightarrow W$ be a linear map. What is correct?
A1: $\mathrm{Ker}(\ell) \subseteq V$
A2: $\mathrm{Ker}(\ell) \subseteq W$
A3: $\mathrm{Ker}(\ell) = V$
A4: $\mathrm{Ker}(\ell) = W$
A5: $\mathrm{Ker}(\ell) \in V$
A6: $\mathrm{Ker}(\ell) \in W$
Q3: Let $\ell: V \rightarrow W$ be a linear map where $\mathrm{dim}(V) = 5$. What is never possible?
A1: $\mathrm{Ker}(\ell)$ is 4-dimensional and $\mathrm{Ran}(\ell)$ is 2-dimensional.
A2: $\mathrm{Ker}(\ell)$ is 2-dimensional and $\mathrm{Ran}(\ell)$ is 3-dimensional.
A3: $\mathrm{Ker}(\ell)$ is 5-dimensional.
A4: $\mathrm{Ran}(\ell)$ is 5-dimensional.
-
Last update: 2024-10