• Title: Similar Matrices

  • Series: Abstract Linear Algebra

  • YouTube-Title: Abstract Linear Algebra 30 | Similar Matrices

  • Bright video: https://youtu.be/eOOAHKikbcI

  • Dark video: https://youtu.be/ktdlPgXccns

  • Quiz: Test your knowledge

  • PDF: Download PDF version of the bright video

  • Dark-PDF: Download PDF version of the dark video

  • Print-PDF: Download printable PDF version

  • Thumbnail (bright): Download PNG

  • Thumbnail (dark): Download PNG

  • Subtitle on GitHub: ala30_sub_eng.srt missing

  • Timestamps (n/a)
  • Subtitle in English (n/a)
  • Quiz Content

    Q1: Which of the following matrices is similar to the zero matrix $\begin{pmatrix}0 & 0 \ 0&0 \end{pmatrix}$?

    A1: No other matrix can be similar to the zero matrix.

    A2: $\begin{pmatrix}1 & 0 \ 0 & 0 \end{pmatrix}$

    A3: $\begin{pmatrix}0 & 0 & 0 \ 0 & 0 & 0 \ 0 & 0 & 0 \end{pmatrix}$

    A4: $\begin{pmatrix}1 & 0 \ 0 & 1 \end{pmatrix}$

    Q2: Let $A$, $B$ similar matrices. What is a correct implication?

    A1: $A$ and $B$ are equivalent matrices.

    A2: $A-B$ is the identity matrix.

    A3: $AB$ is the zero matrix.

    A4: $A$ and $B$ are diagonal matrices.

    Q3: Are the matrices $\begin{pmatrix} 1 & 0 \ 0 & 2 \end{pmatrix}$ and $\begin{pmatrix} 2 & 0 \ 0 & 1 \end{pmatrix}$ similar?

    A1: Yes!

    A2: No, they are not even equivalent.

    A3: No, but they are equivalent because they have the same rank.

    A4: One needs more information.

  • Last update: 2024-10

  • Back to overview page