-
Title: Equivalent Matrices
-
Series: Abstract Linear Algebra
-
YouTube-Title: Abstract Linear Algebra 28 | Equivalent Matrices
-
Bright video: https://youtu.be/lGBXQvJMmrc
-
Dark video: https://youtu.be/a0X6ac1Jow4
-
Quiz: Test your knowledge
-
Dark-PDF: Download PDF version of the dark video
-
Print-PDF: Download printable PDF version
-
Thumbnail (bright): Download PNG
-
Thumbnail (dark): Download PNG
-
Subtitle on GitHub: ala28_sub_eng.srt missing
-
Timestamps (n/a)
-
Subtitle in English (n/a)
-
Quiz Content
Q1: Which of the followig matrices is equivalent to the zero matrix $\begin{pmatrix}0 & 0 \ 0&0 \end{pmatrix}$?
A1: No other matrix can be equivalent to the zero matrix.
A2: $\begin{pmatrix}1 & 0 \ 0 & 0 \end{pmatrix}$
A3: $\begin{pmatrix}0 & 0 & 0 \ 0 & 0 & 0 \ 0 & 0 & 0 \end{pmatrix}$
A4: $\begin{pmatrix}1 & 0 \ 0 & 1 \end{pmatrix}$
Q2: Let $A$, $B$ equivalent matrices. What is a correct implication?
A1: There are invertible matrices $S,T$ such that $ SA = B T$
A2: There is an invertible matrix $T$ such that $ A = T^{-1} B T$
A3: $AB$ is the zero matrix.
A4: $A$ and $B$ are diagonal matrices.
A5: $A,B$ are square matrices.
Q3: Are the matrices $A = \begin{pmatrix} 1 & 0 \ 0 & 2 \end{pmatrix}$ and $B = \begin{pmatrix} 0 & 1 \ 2 & 2 \end{pmatrix}$ equivalent?
A1: Yes!
A2: No!
A4: One needs more information.
-
Last update: 2024-10