• Title: Change of Basis for Linear Maps

  • Series: Abstract Linear Algebra

  • YouTube-Title: Abstract Linear Algebra 27 | Change of Basis for Linear Maps

  • Bright video: https://youtu.be/GLnb9LaWJYg

  • Dark video: https://youtu.be/XyIKlh5h14I

  • Quiz: Test your knowledge

  • PDF: Download PDF version of the bright video

  • Dark-PDF: Download PDF version of the dark video

  • Print-PDF: Download printable PDF version

  • Thumbnail (bright): Download PNG

  • Thumbnail (dark): Download PNG

  • Subtitle on GitHub: ala27_sub_eng.srt missing

  • Timestamps (n/a)
  • Subtitle in English (n/a)
  • Quiz Content

    Q1: Let $V, W$ be two finite-dimensional $\mathbb{F}$-vector spaces and $\ell: V \rightarrow W$ be a linear map. Is it possible that two different matrices represent $\ell$?

    A1: Yes, but for some linear maps there is only one matrix representation.

    A2: Yes, one can always find two different maps when one chooses different bases on the vector spaces.

    A3: No, it’s never possible.

    A4: No, this only works if $V=W$.

    Q2: Let $V, W$ be two finite-dimensional $\mathbb{F}$-vector spaces and $\ell: V \rightarrow W$ be a linear map. We denote the change-of-basis matrices by $T_{\mathcal{B} \leftarrow \widetilde{\mathcal{B}}}$ and $T_{\widetilde{\mathcal{C}} \leftarrow \mathcal{C}}$ for bases $\mathcal{B}, \widetilde{\mathcal{B}}, \widetilde{\mathcal{C}}, \mathcal{C}$. What is correct?

    A1: $\ell_{\widetilde{\mathcal{B}} \leftarrow \widetilde{\mathcal{C}}} = T_{\widetilde{\mathcal{B}} \leftarrow \mathcal{B}} \ell_{{\mathcal{B}} \leftarrow {\mathcal{C}}} T_{\mathcal{C} \leftarrow \widetilde{\mathcal{C}}} $

    A2: $\ell_{\widetilde{\mathcal{B}} \leftarrow \widetilde{\mathcal{C}}} = T_{\widetilde{\mathcal{C}} \leftarrow \mathcal{B}} \ell_{{\mathcal{B}} \leftarrow {\mathcal{C}}} T_{\mathcal{B} \leftarrow \widetilde{\mathcal{C}}} $

    A3: $\ell_{\widetilde{\mathcal{B}} \leftarrow \widetilde{\mathcal{C}}} = T_{\widetilde{\mathcal{C}} \leftarrow \mathcal{B}} \ell_{{\mathcal{B}} \leftarrow {\mathcal{C}}} T_{\mathcal{B} \leftarrow \mathcal{C}} $

    A4: $\ell_{\widetilde{\mathcal{B}} \leftarrow \widetilde{\mathcal{C}}} = T_{\mathcal{C} \leftarrow \mathcal{B}} \ell_{{\mathcal{B}} \leftarrow {\mathcal{C}}} T_{\mathcal{B} \leftarrow \mathcal{C}} $

  • Last update: 2024-10

  • Back to overview page