• Title: Matrix Representations for Compositions

  • Series: Abstract Linear Algebra

  • YouTube-Title: Abstract Linear Algebra 26 | Matrix Representations for Compositions

  • Bright video: https://youtu.be/YD92kR-Xqz8

  • Dark video: https://youtu.be/QGfwW008hM4

  • Quiz: Test your knowledge

  • PDF: Download PDF version of the bright video

  • Dark-PDF: Download PDF version of the dark video

  • Print-PDF: Download printable PDF version

  • Thumbnail (bright): Download PNG

  • Thumbnail (dark): Download PNG

  • Subtitle on GitHub: ala26_sub_eng.srt missing

  • Timestamps (n/a)
  • Subtitle in English (n/a)
  • Quiz Content

    Q1: Let $V, W$ be two finite-dimensional $\mathbb{F}$-vector spaces, and $\ell: V \rightarrow W$, $k: W \rightarrow V$ linear maps. What is always correct about a matrix representation of $k \circ \ell$?

    A1: It’s a square matrix.

    A2: It’s an invertible matrix.

    A3: It’s an orthogonal matrix.

    A4: It’s a unitary matrix.

    Q2: Let $V,W$ be two $\mathbb{F}$-vector spaces of dimension $2$, and $\ell: V \rightarrow W$, $k: W \rightarrow V$ linear maps, with matrix representations $\begin{pmatrix} 2 & 1 \ 3 & 1 \end{pmatrix}$ and $\begin{pmatrix} 1 & 0 \ 0 & 1 \end{pmatrix}$, respectively. What is always correct about a matrix representation of $k \circ \ell$?

    A1: It’s given by $\begin{pmatrix} 2 & 1 \ 3 & 1 \end{pmatrix}$.

    A2: It’s given by $\begin{pmatrix} 1 & 0 \ 0 & 1 \end{pmatrix}$.

    A3: It’s given by $\begin{pmatrix} 1 & 1 \ 1 & 1 \end{pmatrix}$.

    A4: It’s an invertible matrix.

    Q3: Let $V$ be an $\mathbb{F}$-vector spaces of dimension $2$ and $\ell: V \rightarrow V$ be a linear map with matrix representation $\begin{pmatrix} 2 & 5 \ 1 & 2 \end{pmatrix}$. What is a matrix representation of $ \ell^{-1} $?

    A1: $\begin{pmatrix} 2 & 1 \ 2 & 1 \end{pmatrix}$.

    A2: $\begin{pmatrix} 1 & 0 \ 0 & 0 \end{pmatrix}$.

    A3: $\begin{pmatrix} 1 & 1 \ 1 & 1 \end{pmatrix}$.

    A4: Every $2\times2$-matrix can be a valid matrix representation of $ \ell^{-1} $.

    A5: $\begin{pmatrix} -2 & 5 \ 1 & -2 \end{pmatrix}$.

  • Last update: 2024-11

  • Back to overview page