-
Title: Matrix Representation for Linear Maps
-
Series: Abstract Linear Algebra
-
YouTube-Title: Abstract Linear Algebra 25 | Matrix Representation for Linear Maps
-
Bright video: https://youtu.be/2zrG8cvdt5E
-
Dark video: https://youtu.be/r9bV_9xOpyw
-
Quiz: Test your knowledge
-
Dark-PDF: Download PDF version of the dark video
-
Print-PDF: Download printable PDF version
-
Thumbnail (bright): Download PNG
-
Thumbnail (dark): Download PNG
-
Subtitle on GitHub: ala25_sub_eng.srt missing
-
Timestamps (n/a)
-
Subtitle in English (n/a)
-
Quiz Content
Q1: Let $V$ be a $3$-dimensional real vector space with basis $\mathcal{B}$ and $W$ be a $4$-dimensional real vector space with $\mathcal{C}$. What is correct for a linear map $\ell: V \rightarrow W$?
A1: The matrix representation $\ell_{ \mathcal{C} \leftarrow \mathcal{B} }$ is a $(4\times 3)$-matrix with real entries.
A2: The matrix representation $\ell_{ \mathcal{C} \leftarrow \mathcal{B} }$ is a $(3\times 4)$-matrix with real entries.
A3: The matrix representation $\ell_{ \mathcal{C} \leftarrow \mathcal{B} }$ is a $(3\times 3)$-matrix with complex entries.
A4: The matrix representation $\ell_{ \mathcal{C} \leftarrow \mathcal{B} }$ is a $(4\times 4)$-matrix with complex entries.
Q2: Can the matrix $\begin{pmatrix} 1 & 0 & 3 \ 2 & 1 & 1 \end{pmatrix}$ be a matrix representation of the linear map $ \ell: \mathcal{P}_2(\mathbb{R}) \rightarrow \mathcal{P}_1(\mathbb{R}) $ given by $\ell(p) = p^\prime$.
A1: Yes, if one chooses suitable bases $\mathcal{B}$ and $\mathcal{C}$.
A2: No, the matrix is of wrong size.
A3: No, because the matrix has an entry given by 3.
A4: No, the matrix has only real entries.
-
Last update: 2024-10