• Title: Combinations of Linear Maps

  • Series: Abstract Linear Algebra

  • YouTube-Title: Abstract Linear Algebra 23 | Combinations of Linear Maps

  • Bright video: https://youtu.be/p0XQLJMzbq8

  • Dark video: https://youtu.be/zbhyV9_gmjg

  • Quiz: Test your knowledge

  • PDF: Download PDF version of the bright video

  • Dark-PDF: Download PDF version of the dark video

  • Print-PDF: Download printable PDF version

  • Thumbnail (bright): Download PNG

  • Thumbnail (dark): Download PNG

  • Subtitle on GitHub: ala23_sub_eng.srt missing

  • Timestamps (n/a)
  • Subtitle in English (n/a)
  • Quiz Content

    Q1: Let $f: \mathbb{R}^2 \rightarrow \mathbb{R}^3$ be a linear map given by $f(x_1, x_2) = \begin{pmatrix} 1 & 2 \ 2 & -1 \ -3 & 0 \end{pmatrix} \begin{pmatrix} x_1 \ x_2 \end{pmatrix}$ and $g: \mathbb{R}^3 \rightarrow \mathbb{R}$ given by $g(x_1, x_2, x_3) = x_1 + x_2 + x_3$. What is the composition $ g \circ f$?

    A1: It’s a linear map $g \circ f: \mathbb{R}^2 \rightarrow \mathbb{R} $ given by $(g \circ f)(x_1, x_2) = x_2 $

    A2: It’s a linear map $g \circ f: \mathbb{R}^3 \rightarrow \mathbb{R}^2 $ given by $(g \circ f)(x_1, x_2, x_3) = \begin{pmatrix} x_1 \ x_2 \end{pmatrix} $

    A3: It’s a linear map $g \circ f: \mathbb{R} \rightarrow \mathbb{R} $ given by $(g \circ f)(x) = x $

    A4: It’s not a linear map.

    Q2: Consider the set of linear maps between two $\mathbb{F}$-vector spaces $V$ and $W$, both of finite dimension, denoted by $\mathcal{L}(V,W)$. What is correct?

    A1: $\mathcal{L}(V,W)$ is an $\mathbb{F}$-vector space of dimension $\dim(V) \cdot \dim(W)$.

    A2: $\mathcal{L}(V,W)$ is not a vector space.

    A3: $\mathcal{L}(V,W)$ is an $\mathbb{F}$-vector space of dimension $\dim(V) + \dim(W)$.

    A4: $\mathcal{L}(V,W)$ is the empty set.

  • Last update: 2024-10

  • Back to overview page