• Title: Linear Maps

  • Series: Abstract Linear Algebra

  • Chapter: General linear maps

  • YouTube-Title: Abstract Linear Algebra 22 | Linear Maps

  • Bright video: https://youtu.be/I7-qk3AvEws

  • Dark video: https://youtu.be/fUF4tUNYTS4

  • Quiz: Test your knowledge

  • PDF: Download PDF version of the bright video

  • Dark-PDF: Download PDF version of the dark video

  • Print-PDF: Download printable PDF version

  • Thumbnail (bright): Download PNG

  • Thumbnail (dark): Download PNG

  • Subtitle on GitHub: ala22_sub_eng.srt missing

  • Timestamps (n/a)
  • Subtitle in English (n/a)
  • Quiz Content

    Q1: Let $f: \mathbb{R}^2 \rightarrow \mathbb{R}^2$ be a linear map given by $$f(x,y) = \begin{pmatrix} 2y + 3 x \ 5 x - y \end{pmatrix}$$ What is the corresponding matrix $A$ such that $$f(x,y) = A \binom{x}{y}$$ holds?

    A1: $$ A = \begin{pmatrix} 3 & 2 \ 5 & -1 \end{pmatrix} $$

    A2: $$ A = \begin{pmatrix} 3 & -2 \ -5 & -1 \end{pmatrix} $$.

    A3: $$ A = \begin{pmatrix} 2 & 3 \ 5 & -1 \end{pmatrix} $$

    A4: $$ A = \begin{pmatrix} 2 & 3 \ 5 & 1 \end{pmatrix} $$

    Q2: Let $V,W$ be $\mathbb{F}$-vector spaces. What is always correct for a linear map $f: V \rightarrow W$?

    A1: $ f(0) = 0 $

    A2: $ f(x+y) = f(x-y) $

    A3: $ f(\lambda \cdot x) = f(x) $

    A4: $ f(0\cdot x) = f(x) $

    Q3: Let $V = \mathcal{P}(\mathbb{R})$ be the space of real polynomials. Let’s define the map $\ell: V \rightarrow \mathbb{R}$ by $\ell(p) = \int_0^1 p(x) , dx$. Is it linear?

    A1: No, because $\ell(0) \neq 0$.

    A2: No, becasue $\ell(p+q) \neq \ell(p) + \ell(q)$ in general.

    A3: No, because $\ell(x \mapsto x^2) \neq \ell(x \mapsto x) \cdot \ell(x \mapsto x)$

    A4: Yes, the two properties are satisfied.

  • Last update: 2024-10

  • Back to overview page