-
Title: Example for Gram-Schmidt Process
-
Series: Abstract Linear Algebra
-
Chapter: General inner products
-
YouTube-Title: Abstract Linear Algebra 21 | Example for Gram-Schmidt Process
-
Bright video: https://youtu.be/VdXSGx6F-dM
-
Dark video: https://youtu.be/DeGiBqTxMlc
-
Quiz: Test your knowledge
-
Dark-PDF: Download PDF version of the dark video
-
Print-PDF: Download printable PDF version
-
Thumbnail (bright): Download PNG
-
Thumbnail (dark): Download PNG
-
Subtitle on GitHub: ala21_sub_eng.srt missing
-
Timestamps (n/a)
-
Subtitle in English (n/a)
-
Quiz Content
Q1: Let $V = \mathcal{P}2( [-1,1], \mathbb{R} )$ be the polynomial space with inner product $ \langle f, g \rangle = \int{-1}^{1} f(x) g(x) , dx $. Is the monomial basis $(m_0, m_1, m_2)$ an ONB?
A1: No, it’s not orthogonal.
A2: Yes, it is.
A3: One needs more information.
Q2: Let $V = \mathcal{P}2( [-1,1], \mathbb{R} )$ be the polynomial space with inner product $ \langle f, g \rangle = \int{-1}^{1} f(x) g(x) , dx $. What do we get when we apply the Gram-Schmidt procedure to the monomial basis $(m_0, m_1, m_2)$?
A1: We get an ONB of polynomials, called the Legendre polynomials.
A2: We get a basis $(b_1, b_2, b_3)$ with $b_1 = m_0$.
A3: We get an OB $(b_1, b_2, b_3)$ with $b_1 = \frac{1}{2} m_0$.
-
Last update: 2024-10