• Title: Orthonormal Basis

  • Series: Abstract Linear Algebra

  • Chapter: General inner products

  • YouTube-Title: Abstract Linear Algebra 18 | Orthonormal Basis

  • Bright video: https://youtu.be/VfpfHxUF630

  • Dark video: https://youtu.be/CTKOV9c8VFE

  • Quiz: Test your knowledge

  • PDF: Download PDF version of the bright video

  • Dark-PDF: Download PDF version of the dark video

  • Print-PDF: Download printable PDF version

  • Thumbnail (bright): Download PNG

  • Thumbnail (dark): Download PNG

  • Subtitle on GitHub: ala18_sub_eng.srt missing

  • Timestamps (n/a)
  • Subtitle in English (n/a)
  • Quiz Content

    Q1: Let $V$ be a $\mathbb{F}$-vector space with inner product $\langle \cdot, \cdot \rangle$ and $U \subseteq V$ be a $k$-dimensional subspace with an ONB $\mathcal{B} = (e_1, \ldots, e_k)$. What is not correct?

    A1: $\langle b_1 - b_2, b_2 \rangle = 0$

    A2: $\mathcal{B}$ is a basis.

    A3: $\langle b_1, b_2 \rangle = 0$

    A4: $\langle b_2, b_2 \rangle = 1$

    Q2: Let $V$ be a $\mathbb{F}$-vector space with inner product $\langle \cdot, \cdot \rangle$ and $U \subseteq V$ be a $k$-dimensional subspace with an ONS $\mathcal{B} = (e_1, \ldots, e_n)$. What is not correct?

    A1: $\langle b_1 - b_2, b_2 \rangle = 1$

    A2: $\mathcal{B}$ is a basis.

    A3: $\langle b_1, b_2 \rangle = 0$

    A4: $\langle b_2, b_2 \rangle = 1$

    Q3: Consider $\mathbb{R}^2$ with inner product $\langle x,y\rangle = x_1 x_2 + 3 y_1 y_2$. Is $\left( \binom{1}{0}, \binom{0}{1} \right)$ an ONB?

    A1: No, it’s not even a basis.

    A2: No, it’s not even an orthogonal basis.

    A3: No, it’s an orthogonal basis but not an ONB.

    A4: Yes, it is.

    A5: One needs more information.

  • Last update: 2024-10

  • Back to overview page