• Title: Approximation Formula

  • Series: Abstract Linear Algebra

  • Chapter: General inner products

  • YouTube-Title: Abstract Linear Algebra 17 | Approximation Formula

  • Bright video: https://youtu.be/aWZVpJ0CfoA

  • Dark video: https://youtu.be/zyVE7ttc5Rk

  • Quiz: Test your knowledge

  • PDF: Download PDF version of the bright video

  • Dark-PDF: Download PDF version of the dark video

  • Print-PDF: Download printable PDF version

  • Thumbnail (bright): Download PNG

  • Thumbnail (dark): Download PNG

  • Subtitle on GitHub: ala17_sub_eng.srt missing

  • Timestamps (n/a)
  • Subtitle in English (n/a)
  • Quiz Content

    Q1: Let $V$ be a $\mathbb{F}$-vector space with inner product $\langle \cdot, \cdot \rangle$ and $U \subseteq V$ be a finite-dimensional subspace. For a vector $x \in V$ we have the orthogonal projection $x = x|U + x|{U^{\perp}}$. What is the distance between $x$ and $U$?

    A1: $| x|_U | $

    A2: $| x|_{U^{\perp}}| $

    A3: $| x | $

    A4: $| x + x|_{U^{\perp}} | $

    Q2: Let $V$ be a $\mathbb{F}$-vector space with inner product $\langle \cdot, \cdot \rangle$ and $u,v \in V$ two vectors with $u \perp v$. What is always correct?

    A1: $| u + v |^2 = | u |^2 + |v |^2$

    A2: $| u + v | = | u | + |v |$

    A3: $| u + v | = | u |^2$

    A4: $| u + v |^2 = 0$

    Q3: Let $\mathbb{R}^3$ given with the standard inner product $\langle \cdot, \cdot \rangle$ and $U$ the two-dimensional subspace given by the $x$-$y$-plane. What is the distance between $U$ and $x= \begin{pmatrix} 5 \ 4 \ 3 \end{pmatrix}$?

    A1: 5

    A2: 4

    A3: 3

    A4: 0

  • Last update: 2024-10

  • Back to overview page