-
Title: Orthogonal Projection Onto Line
-
Series: Abstract Linear Algebra
-
Chapter: General inner products
-
YouTube-Title: Abstract Linear Algebra 14 | Orthogonal Projection Onto Line
-
Bright video: https://youtu.be/m9_Nfzw0-Dw
-
Dark video: https://youtu.be/dwkAyFuIAek
-
Quiz: Test your knowledge
-
Dark-PDF: Download PDF version of the dark video
-
Print-PDF: Download printable PDF version
-
Thumbnail (bright): Download PNG
-
Thumbnail (dark): Download PNG
-
Subtitle on GitHub: ala14_sub_eng.srt missing
-
Timestamps (n/a)
-
Subtitle in English (n/a)
-
Quiz Content
Q1: Let $V$ be a vector space with inner product $\langle \cdot, \cdot \rangle$ and $e \in V$ a vector with $\langle e,e \rangle = 1$. What is the orthogonal projection of $x \in V$ onto $\mathrm{Span}(e)$?
A1: $p = e \langle e, x \rangle$
A2: $p = \langle e, e \rangle x$
A3: $p = x \langle e, x \rangle$
A4: $p = e \langle x, x \rangle$
Q2: Let $V$ be a vector space with inner product $\langle \cdot, \cdot \rangle$ and $e \in V$ a vector with $\langle e,e \rangle = 1$. What is (in general) not a property of the map $P: V \rightarrow V$ with $ x \mapsto e \langle e, x \rangle$?
A1: $x - Px = 0$ for all $x \in V$.
A2: $P \circ P = P$
A3: $P$ is linear
A4: $\langle y, Px \rangle = \langle P y, x \rangle$ for all $x,y \in V$
A5: $\mathrm{Ran}(P) \subseteq \mathrm{Span}(e)$
Q3: Let $V$ be a vector space with inner product $\langle \cdot, \cdot \rangle$ and $e \in V$ a vector with $\langle e,e \rangle = 1$. For $x \in V$, we can write $ x = p + n$ with $p \in \mathrm{Span}(e)$. What is (in general) not correct for $n$?
A1: $n \perp x$
A2: $n$ is called the normal component of $x$ w.r.t. $\mathrm{Span}(e)$.
A3: $n \in \mathrm{Span}(e)^\perp$
A4: $n \perp e$
A5: $n \in V$
-
Last update: 2024-10