• Title: Orthogonal Projection Onto Line

  • Series: Abstract Linear Algebra

  • Chapter: General inner products

  • YouTube-Title: Abstract Linear Algebra 14 | Orthogonal Projection Onto Line

  • Bright video: https://youtu.be/m9_Nfzw0-Dw

  • Dark video: https://youtu.be/dwkAyFuIAek

  • Quiz: Test your knowledge

  • PDF: Download PDF version of the bright video

  • Dark-PDF: Download PDF version of the dark video

  • Print-PDF: Download printable PDF version

  • Thumbnail (bright): Download PNG

  • Thumbnail (dark): Download PNG

  • Subtitle on GitHub: ala14_sub_eng.srt missing

  • Timestamps (n/a)
  • Subtitle in English (n/a)
  • Quiz Content

    Q1: Let $V$ be a vector space with inner product $\langle \cdot, \cdot \rangle$ and $e \in V$ a vector with $\langle e,e \rangle = 1$. What is the orthogonal projection of $x \in V$ onto $\mathrm{Span}(e)$?

    A1: $p = e \langle e, x \rangle$

    A2: $p = \langle e, e \rangle x$

    A3: $p = x \langle e, x \rangle$

    A4: $p = e \langle x, x \rangle$

    Q2: Let $V$ be a vector space with inner product $\langle \cdot, \cdot \rangle$ and $e \in V$ a vector with $\langle e,e \rangle = 1$. What is (in general) not a property of the map $P: V \rightarrow V$ with $ x \mapsto e \langle e, x \rangle$?

    A1: $x - Px = 0$ for all $x \in V$.

    A2: $P \circ P = P$

    A3: $P$ is linear

    A4: $\langle y, Px \rangle = \langle P y, x \rangle$ for all $x,y \in V$

    A5: $\mathrm{Ran}(P) \subseteq \mathrm{Span}(e)$

    Q3: Let $V$ be a vector space with inner product $\langle \cdot, \cdot \rangle$ and $e \in V$ a vector with $\langle e,e \rangle = 1$. For $x \in V$, we can write $ x = p + n$ with $p \in \mathrm{Span}(e)$. What is (in general) not correct for $n$?

    A1: $n \perp x$

    A2: $n$ is called the normal component of $x$ w.r.t. $\mathrm{Span}(e)$.

    A3: $n \in \mathrm{Span}(e)^\perp$

    A4: $n \perp e$

    A5: $n \in V$

  • Last update: 2024-10

  • Back to overview page