• Title: Orthogonality

  • Series: Abstract Linear Algebra

  • Chapter: General inner products

  • YouTube-Title: Abstract Linear Algebra 13 | Orthogonality

  • Bright video: https://youtu.be/YCW1zTk4C9w

  • Dark video: https://youtu.be/iTSbHzXhagA

  • Quiz: Test your knowledge

  • PDF: Download PDF version of the bright video

  • Dark-PDF: Download PDF version of the dark video

  • Print-PDF: Download printable PDF version

  • Thumbnail (bright): Download PNG

  • Thumbnail (dark): Download PNG

  • Subtitle on GitHub: ala13_sub_eng.srt missing

  • Timestamps (n/a)
  • Subtitle in English (n/a)
  • Quiz Content

    Q1: Let $V$ be a vector space with inner product $\langle \cdot, \cdot \rangle$. Which statement is not correct?

    A1: If $x \perp y$, then $-x$ is not orthogonal to $y$.

    A2: The zero vector orthogonal to the zero vector.

    A3: The zero vector is orthogonal to each vector $x \in V$.

    A4: If $x,y \in V$ are orthogonal, then $\langle x, y \rangle = 0$.

    Q2: Let $V = \mathbb{C}^2$ be given with the standard inner product $\langle y, x \rangle = \overline{y_1} x_1 + \overline{y_2} x_2$. Which statement is correct?

    A1: The vector $\binom{i}{1}$ is orthogonal to $\binom{i}{1}$.

    A2: The vector $\binom{i}{1}$ is orthogonal to $\binom{-i}{1}$.

    A3: The vector $\binom{1}{1}$ is orthogonal to $\binom{i}{i}$.

    A4: The vector $\binom{0}{1}$ is not orthogonal to $\binom{1}{0}$.

    Q3: Let $V = \mathcal{P}([0,1])$ be given with the standard inner product $\langle y, x \rangle = \overline{y_1} x_1 + \overline{y_2} x_2$. Which statement is correct?

    A1: The vector $\binom{i}{1}$ is orthogonal to $\binom{i}{1}$.

    A2: The vector $\binom{i}{1}$ is orthogonal to $\binom{-i}{1}$.

    A3: The vector $\binom{1}{1}$ is orthogonal to $\binom{i}{i}$.

    A4: The vector $\binom{0}{1}$ is not orthogonal to $\binom{1}{0}$.

  • Last update: 2024-10

  • Back to overview page