-
Title: Cauchy-Schwarz Inequality
-
Series: Abstract Linear Algebra
-
Chapter: General inner products
-
YouTube-Title: Abstract Linear Algebra 12 | Cauchy-Schwarz Inequality
-
Bright video: https://youtu.be/ratIia6yANw
-
Dark video: https://youtu.be/P55SZr83LVQ
-
Quiz: Test your knowledge
-
Dark-PDF: Download PDF version of the dark video
-
Print-PDF: Download printable PDF version
-
Thumbnail (bright): Download PNG
-
Thumbnail (dark): Download PNG
-
Subtitle on GitHub: ala12_sub_eng.srt missing
-
Timestamps (n/a)
-
Subtitle in English (n/a)
-
Quiz Content
Q1: Let $V$ be a vector space with inner product $\langle \cdot, \cdot \rangle$. What is not a correct formulation for the Cauchy-Schwarz inequality?
A1: $\langle x, y \rangle \leq \langle x, x \rangle \langle y, y \rangle $
A2: $|\langle x, y \rangle|^2 \leq \langle x, x \rangle \langle y, y \rangle $
A3: $|\langle x, y \rangle| \leq | x | | y| $
A4: $\frac{\langle x, y \rangle}{| x | | y|} \in [-1,1] $ for $x \neq 0 \neq y$.
Q2: Let $V = \mathbb{C}$ be given with the standard inner product $\langle y, x \rangle = \overline{y} x$. What does the Cauchy-Schwarz inequality say in this case?
A1: $ | x y | \leq |x| |y| $
A2: $ | x y | < |x| |y| $
A3: $ | x y | > |x| |y| $
A4: $ | x y | \neq |x| |y| $
-
Last update: 2024-10