• Title: Inner Products

  • Series: Abstract Linear Algebra

  • Chapter: General inner products

  • YouTube-Title: Abstract Linear Algebra 10 | Inner Products

  • Bright video: https://youtu.be/xYOxQaEDkdg

  • Dark video: https://youtu.be/FiahR01VK9E

  • Quiz: Test your knowledge

  • PDF: Download PDF version of the bright video

  • Dark-PDF: Download PDF version of the dark video

  • Print-PDF: Download printable PDF version

  • Thumbnail (bright): Download PNG

  • Thumbnail (dark): Download PNG

  • Subtitle on GitHub: ala10_sub_eng.srt missing

  • Timestamps (n/a)
  • Subtitle in English (n/a)
  • Quiz Content

    Q1: Let $\langle \cdot, \cdot \rangle$ be an inner product on $\mathbb{C}^n$. What is not correct in general?

    A1: $\langle x, y \rangle = 0$ implies $x = y$

    A2: $\langle x, x \rangle = 0$ implies $x = 0$

    A3: $\langle x, 0 \rangle = 0$ for all $x \in \mathbb{C}^n$

    A4: $\langle x, i y\rangle = - \langle i x, y\rangle$ for all $x,y \in \mathbb{C}^n$

    Q2: Let $\langle \cdot, \cdot \rangle$ be the standard inner product on $\mathbb{C}^n$. What is in general correct?

    A1: $\langle x, y \rangle = x^\ast y$

    A2: $\langle x, y \rangle = x^T y$

    A3: $\langle x, y \rangle = 0$ for all $x,y \in \mathbb{C}^n$

    A4: $\langle x, y\rangle = x -y$

    Q3: Let $\langle \cdot, \cdot \rangle$ be the inner product on $\mathcal{P}([-1,1], \mathbb{R})$ given by $\langle f, g\rangle = \int_{-1}^1 f(x) g(x), dx$. Which polynomials are orthogonal to each other? Note that $f,g$ are called orthogonal if $\langle f, g\rangle =0$.

    A1: $f(x) = x^2$ and $g(x) = x$

    A2: $f(x) = x^2$ and $g(x) = 1$

    A3: $f(x) = x$ and $g(x) = x$

    A4: $f(x) = x^2$ and $g(x) = x^2$

  • Last update: 2024-10

  • Back to overview page